blob: c1eb469f7327b273ad2428f9e7b8af4b3b773da1 [file] [log] [blame]
// Copyright (c) 2012 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "base/memory/scoped_ptr.h"
#include <stddef.h>
#include <sstream>
#include <gtest/gtest.h>
#include "base/bind.h"
#include "base/callback.h"
#include "base/macros.h"
#include "build/build_config.h"
namespace {
// Used to test depth subtyping.
class ConDecLoggerParent {
public:
virtual ~ConDecLoggerParent() {}
virtual void SetPtr(int* ptr) = 0;
virtual int SomeMeth(int x) const = 0;
};
class ConDecLogger : public ConDecLoggerParent {
public:
ConDecLogger() : ptr_(NULL) { }
explicit ConDecLogger(int* ptr) { SetPtr(ptr); }
~ConDecLogger() override { --*ptr_; }
void SetPtr(int* ptr) override {
ptr_ = ptr;
++*ptr_;
}
int SomeMeth(int x) const override { return x; }
private:
int* ptr_;
DISALLOW_COPY_AND_ASSIGN(ConDecLogger);
};
struct CountingDeleter {
explicit CountingDeleter(int* count) : count_(count) {}
inline void operator()(double* ptr) const {
(*count_)++;
}
int* count_;
};
// Used to test assignment of convertible deleters.
struct CountingDeleterChild : public CountingDeleter {
explicit CountingDeleterChild(int* count) : CountingDeleter(count) {}
};
class OverloadedNewAndDelete {
public:
void* operator new(size_t size) {
g_new_count++;
return malloc(size);
}
void operator delete(void* ptr) {
g_delete_count++;
free(ptr);
}
static void ResetCounters() {
g_new_count = 0;
g_delete_count = 0;
}
static int new_count() { return g_new_count; }
static int delete_count() { return g_delete_count; }
private:
static int g_new_count;
static int g_delete_count;
};
int OverloadedNewAndDelete::g_new_count = 0;
int OverloadedNewAndDelete::g_delete_count = 0;
scoped_ptr<ConDecLogger> PassThru(scoped_ptr<ConDecLogger> logger) {
return logger;
}
void GrabAndDrop(scoped_ptr<ConDecLogger> logger) {
}
// Do not delete this function! It's existence is to test that you can
// return a temporarily constructed version of the scoper.
scoped_ptr<ConDecLogger> TestReturnOfType(int* constructed) {
return scoped_ptr<ConDecLogger>(new ConDecLogger(constructed));
}
} // namespace
TEST(ScopedPtrTest, ScopedPtr) {
int constructed = 0;
// Ensure size of scoped_ptr<> doesn't increase unexpectedly.
static_assert(sizeof(int*) >= sizeof(scoped_ptr<int>),
"scoped_ptr shouldn't be larger than the raw pointer");
{
scoped_ptr<ConDecLogger> scoper(new ConDecLogger(&constructed));
EXPECT_EQ(1, constructed);
EXPECT_TRUE(scoper.get());
EXPECT_EQ(10, scoper->SomeMeth(10));
EXPECT_EQ(10, scoper.get()->SomeMeth(10));
EXPECT_EQ(10, (*scoper).SomeMeth(10));
}
EXPECT_EQ(0, constructed);
// Test reset() and release()
{
scoped_ptr<ConDecLogger> scoper(new ConDecLogger(&constructed));
EXPECT_EQ(1, constructed);
EXPECT_TRUE(scoper.get());
scoper.reset(new ConDecLogger(&constructed));
EXPECT_EQ(1, constructed);
EXPECT_TRUE(scoper.get());
scoper.reset();
EXPECT_EQ(0, constructed);
EXPECT_FALSE(scoper.get());
scoper.reset(new ConDecLogger(&constructed));
EXPECT_EQ(1, constructed);
EXPECT_TRUE(scoper.get());
ConDecLogger* take = scoper.release();
EXPECT_EQ(1, constructed);
EXPECT_FALSE(scoper.get());
delete take;
EXPECT_EQ(0, constructed);
scoper.reset(new ConDecLogger(&constructed));
EXPECT_EQ(1, constructed);
EXPECT_TRUE(scoper.get());
}
EXPECT_EQ(0, constructed);
// Test swap().
{
scoped_ptr<ConDecLogger> scoper1;
scoped_ptr<ConDecLogger> scoper2;
EXPECT_TRUE(scoper1.get() == scoper2.get());
EXPECT_FALSE(scoper1.get() != scoper2.get());
ConDecLogger* logger = new ConDecLogger(&constructed);
scoper1.reset(logger);
EXPECT_EQ(logger, scoper1.get());
EXPECT_FALSE(scoper2.get());
EXPECT_FALSE(scoper1.get() == scoper2.get());
EXPECT_TRUE(scoper1.get() != scoper2.get());
scoper2.swap(scoper1);
EXPECT_EQ(logger, scoper2.get());
EXPECT_FALSE(scoper1.get());
EXPECT_FALSE(scoper1.get() == scoper2.get());
EXPECT_TRUE(scoper1.get() != scoper2.get());
}
EXPECT_EQ(0, constructed);
}
TEST(ScopedPtrTest, ScopedPtrDepthSubtyping) {
int constructed = 0;
// Test construction from a scoped_ptr to a derived class.
{
scoped_ptr<ConDecLogger> scoper(new ConDecLogger(&constructed));
EXPECT_EQ(1, constructed);
EXPECT_TRUE(scoper.get());
scoped_ptr<ConDecLoggerParent> scoper_parent(std::move(scoper));
EXPECT_EQ(1, constructed);
EXPECT_TRUE(scoper_parent.get());
EXPECT_FALSE(scoper.get());
EXPECT_EQ(10, scoper_parent->SomeMeth(10));
EXPECT_EQ(10, scoper_parent.get()->SomeMeth(10));
EXPECT_EQ(10, (*scoper_parent).SomeMeth(10));
}
EXPECT_EQ(0, constructed);
// Test assignment from a scoped_ptr to a derived class.
{
scoped_ptr<ConDecLogger> scoper(new ConDecLogger(&constructed));
EXPECT_EQ(1, constructed);
EXPECT_TRUE(scoper.get());
scoped_ptr<ConDecLoggerParent> scoper_parent;
scoper_parent = std::move(scoper);
EXPECT_EQ(1, constructed);
EXPECT_TRUE(scoper_parent.get());
EXPECT_FALSE(scoper.get());
}
EXPECT_EQ(0, constructed);
// Test construction of a scoped_ptr with an additional const annotation.
{
scoped_ptr<ConDecLogger> scoper(new ConDecLogger(&constructed));
EXPECT_EQ(1, constructed);
EXPECT_TRUE(scoper.get());
scoped_ptr<const ConDecLogger> scoper_const(std::move(scoper));
EXPECT_EQ(1, constructed);
EXPECT_TRUE(scoper_const.get());
EXPECT_FALSE(scoper.get());
EXPECT_EQ(10, scoper_const->SomeMeth(10));
EXPECT_EQ(10, scoper_const.get()->SomeMeth(10));
EXPECT_EQ(10, (*scoper_const).SomeMeth(10));
}
EXPECT_EQ(0, constructed);
// Test assignment to a scoped_ptr with an additional const annotation.
{
scoped_ptr<ConDecLogger> scoper(new ConDecLogger(&constructed));
EXPECT_EQ(1, constructed);
EXPECT_TRUE(scoper.get());
scoped_ptr<const ConDecLogger> scoper_const;
scoper_const = std::move(scoper);
EXPECT_EQ(1, constructed);
EXPECT_TRUE(scoper_const.get());
EXPECT_FALSE(scoper.get());
}
EXPECT_EQ(0, constructed);
// Test assignment to a scoped_ptr deleter of parent type.
{
// Custom deleters never touch these value.
double dummy_value, dummy_value2;
int deletes = 0;
int alternate_deletes = 0;
scoped_ptr<double, CountingDeleter> scoper(&dummy_value,
CountingDeleter(&deletes));
scoped_ptr<double, CountingDeleterChild> scoper_child(
&dummy_value2, CountingDeleterChild(&alternate_deletes));
EXPECT_TRUE(scoper);
EXPECT_TRUE(scoper_child);
EXPECT_EQ(0, deletes);
EXPECT_EQ(0, alternate_deletes);
// Test this compiles and correctly overwrites the deleter state.
scoper = std::move(scoper_child);
EXPECT_TRUE(scoper);
EXPECT_FALSE(scoper_child);
EXPECT_EQ(1, deletes);
EXPECT_EQ(0, alternate_deletes);
scoper.reset();
EXPECT_FALSE(scoper);
EXPECT_FALSE(scoper_child);
EXPECT_EQ(1, deletes);
EXPECT_EQ(1, alternate_deletes);
scoper_child.reset(&dummy_value);
EXPECT_TRUE(scoper_child);
EXPECT_EQ(1, deletes);
EXPECT_EQ(1, alternate_deletes);
scoped_ptr<double, CountingDeleter> scoper_construct(
std::move(scoper_child));
EXPECT_TRUE(scoper_construct);
EXPECT_FALSE(scoper_child);
EXPECT_EQ(1, deletes);
EXPECT_EQ(1, alternate_deletes);
scoper_construct.reset();
EXPECT_EQ(1, deletes);
EXPECT_EQ(2, alternate_deletes);
}
}
TEST(ScopedPtrTest, ScopedPtrWithArray) {
static const int kNumLoggers = 12;
int constructed = 0;
{
scoped_ptr<ConDecLogger[]> scoper(new ConDecLogger[kNumLoggers]);
EXPECT_TRUE(scoper);
EXPECT_EQ(&scoper[0], scoper.get());
for (int i = 0; i < kNumLoggers; ++i) {
scoper[i].SetPtr(&constructed);
}
EXPECT_EQ(12, constructed);
EXPECT_EQ(10, scoper.get()->SomeMeth(10));
EXPECT_EQ(10, scoper[2].SomeMeth(10));
}
EXPECT_EQ(0, constructed);
// Test reset() and release()
{
scoped_ptr<ConDecLogger[]> scoper;
EXPECT_FALSE(scoper.get());
EXPECT_FALSE(scoper.release());
EXPECT_FALSE(scoper.get());
scoper.reset();
EXPECT_FALSE(scoper.get());
scoper.reset(new ConDecLogger[kNumLoggers]);
for (int i = 0; i < kNumLoggers; ++i) {
scoper[i].SetPtr(&constructed);
}
EXPECT_EQ(12, constructed);
scoper.reset();
EXPECT_EQ(0, constructed);
scoper.reset(new ConDecLogger[kNumLoggers]);
for (int i = 0; i < kNumLoggers; ++i) {
scoper[i].SetPtr(&constructed);
}
EXPECT_EQ(12, constructed);
ConDecLogger* ptr = scoper.release();
EXPECT_EQ(12, constructed);
delete[] ptr;
EXPECT_EQ(0, constructed);
}
EXPECT_EQ(0, constructed);
// Test swap() and type-safe Boolean.
{
scoped_ptr<ConDecLogger[]> scoper1;
scoped_ptr<ConDecLogger[]> scoper2;
EXPECT_TRUE(scoper1.get() == scoper2.get());
EXPECT_FALSE(scoper1.get() != scoper2.get());
ConDecLogger* loggers = new ConDecLogger[kNumLoggers];
for (int i = 0; i < kNumLoggers; ++i) {
loggers[i].SetPtr(&constructed);
}
scoper1.reset(loggers);
EXPECT_TRUE(scoper1);
EXPECT_EQ(loggers, scoper1.get());
EXPECT_FALSE(scoper2);
EXPECT_FALSE(scoper2.get());
EXPECT_FALSE(scoper1.get() == scoper2.get());
EXPECT_TRUE(scoper1.get() != scoper2.get());
scoper2.swap(scoper1);
EXPECT_EQ(loggers, scoper2.get());
EXPECT_FALSE(scoper1.get());
EXPECT_FALSE(scoper1.get() == scoper2.get());
EXPECT_TRUE(scoper1.get() != scoper2.get());
}
EXPECT_EQ(0, constructed);
{
ConDecLogger* loggers = new ConDecLogger[kNumLoggers];
scoped_ptr<ConDecLogger[]> scoper(loggers);
EXPECT_TRUE(scoper);
for (int i = 0; i < kNumLoggers; ++i) {
scoper[i].SetPtr(&constructed);
}
EXPECT_EQ(kNumLoggers, constructed);
// Test moving with constructor;
scoped_ptr<ConDecLogger[]> scoper2(std::move(scoper));
EXPECT_EQ(kNumLoggers, constructed);
// Test moving with assignment;
scoped_ptr<ConDecLogger[]> scoper3;
scoper3 = std::move(scoper2);
EXPECT_EQ(kNumLoggers, constructed);
EXPECT_FALSE(scoper);
EXPECT_FALSE(scoper2);
EXPECT_TRUE(scoper3);
}
EXPECT_EQ(0, constructed);
}
TEST(ScopedPtrTest, MoveBehavior) {
int constructed = 0;
{
ConDecLogger* logger = new ConDecLogger(&constructed);
scoped_ptr<ConDecLogger> scoper(logger);
EXPECT_EQ(1, constructed);
// Test moving with constructor;
scoped_ptr<ConDecLogger> scoper2(std::move(scoper));
EXPECT_EQ(1, constructed);
// Test moving with assignment;
scoped_ptr<ConDecLogger> scoper3;
scoper3 = std::move(scoper2);
EXPECT_EQ(1, constructed);
EXPECT_FALSE(scoper.get());
EXPECT_FALSE(scoper2.get());
EXPECT_TRUE(scoper3.get());
}
#if !defined(OS_ANDROID) && !defined(OS_LINUX)
// Test uncaught Pass() does not have side effects, because Pass()
// is implemented by std::move().
// TODO(danakj): Remove this test case when we remove Pass().
{
ConDecLogger* logger = new ConDecLogger(&constructed);
scoped_ptr<ConDecLogger> scoper(logger);
EXPECT_EQ(1, constructed);
// Should auto-destruct logger by end of scope.
scoped_ptr<ConDecLogger>&& rvalue = scoper.Pass();
// The Pass() function mimics std::move(), which does not have side-effects.
EXPECT_TRUE(scoper.get());
EXPECT_TRUE(rvalue);
}
EXPECT_EQ(0, constructed);
#endif
// Test that passing to function which does nothing does not leak.
{
ConDecLogger* logger = new ConDecLogger(&constructed);
scoped_ptr<ConDecLogger> scoper(logger);
EXPECT_EQ(1, constructed);
// Should auto-destruct logger by end of scope.
GrabAndDrop(std::move(scoper));
EXPECT_FALSE(scoper.get());
}
EXPECT_EQ(0, constructed);
}
TEST(ScopedPtrTest, ReturnTypeBehavior) {
int constructed = 0;
// Test that we can return a scoped_ptr.
{
ConDecLogger* logger = new ConDecLogger(&constructed);
scoped_ptr<ConDecLogger> scoper(logger);
EXPECT_EQ(1, constructed);
PassThru(std::move(scoper));
EXPECT_FALSE(scoper.get());
}
EXPECT_EQ(0, constructed);
// Test uncaught return type not leak.
{
ConDecLogger* logger = new ConDecLogger(&constructed);
scoped_ptr<ConDecLogger> scoper(logger);
EXPECT_EQ(1, constructed);
// Should auto-destruct logger by end of scope.
PassThru(std::move(scoper));
EXPECT_FALSE(scoper.get());
}
EXPECT_EQ(0, constructed);
// Call TestReturnOfType() so the compiler doesn't warn for an unused
// function.
{
TestReturnOfType(&constructed);
}
EXPECT_EQ(0, constructed);
}
TEST(ScopedPtrTest, CustomDeleter) {
double dummy_value; // Custom deleter never touches this value.
int deletes = 0;
int alternate_deletes = 0;
// Normal delete support.
{
deletes = 0;
scoped_ptr<double, CountingDeleter> scoper(&dummy_value,
CountingDeleter(&deletes));
EXPECT_EQ(0, deletes);
EXPECT_TRUE(scoper.get());
}
EXPECT_EQ(1, deletes);
// Test reset() and release().
deletes = 0;
{
scoped_ptr<double, CountingDeleter> scoper(NULL,
CountingDeleter(&deletes));
EXPECT_FALSE(scoper.get());
EXPECT_FALSE(scoper.release());
EXPECT_FALSE(scoper.get());
scoper.reset();
EXPECT_FALSE(scoper.get());
EXPECT_EQ(0, deletes);
scoper.reset(&dummy_value);
scoper.reset();
EXPECT_EQ(1, deletes);
scoper.reset(&dummy_value);
EXPECT_EQ(&dummy_value, scoper.release());
}
EXPECT_EQ(1, deletes);
// Test get_deleter().
deletes = 0;
alternate_deletes = 0;
{
scoped_ptr<double, CountingDeleter> scoper(&dummy_value,
CountingDeleter(&deletes));
// Call deleter manually.
EXPECT_EQ(0, deletes);
scoper.get_deleter()(&dummy_value);
EXPECT_EQ(1, deletes);
// Deleter is still there after reset.
scoper.reset();
EXPECT_EQ(2, deletes);
scoper.get_deleter()(&dummy_value);
EXPECT_EQ(3, deletes);
// Deleter can be assigned into (matches C++11 unique_ptr<> spec).
scoper.get_deleter() = CountingDeleter(&alternate_deletes);
scoper.reset(&dummy_value);
EXPECT_EQ(0, alternate_deletes);
}
EXPECT_EQ(3, deletes);
EXPECT_EQ(1, alternate_deletes);
// Test operator= deleter support.
deletes = 0;
alternate_deletes = 0;
{
double dummy_value2;
scoped_ptr<double, CountingDeleter> scoper(&dummy_value,
CountingDeleter(&deletes));
scoped_ptr<double, CountingDeleter> scoper2(
&dummy_value2,
CountingDeleter(&alternate_deletes));
EXPECT_EQ(0, deletes);
EXPECT_EQ(0, alternate_deletes);
// Pass the second deleter through a constructor and an operator=. Then
// reinitialize the empty scopers to ensure that each one is deleting
// properly.
scoped_ptr<double, CountingDeleter> scoper3(std::move(scoper2));
scoper = std::move(scoper3);
EXPECT_EQ(1, deletes);
scoper2.reset(&dummy_value2);
scoper3.reset(&dummy_value2);
EXPECT_EQ(0, alternate_deletes);
}
EXPECT_EQ(1, deletes);
EXPECT_EQ(3, alternate_deletes);
// Test swap(), and type-safe Boolean.
{
scoped_ptr<double, CountingDeleter> scoper1(NULL,
CountingDeleter(&deletes));
scoped_ptr<double, CountingDeleter> scoper2(NULL,
CountingDeleter(&deletes));
EXPECT_TRUE(scoper1.get() == scoper2.get());
EXPECT_FALSE(scoper1.get() != scoper2.get());
scoper1.reset(&dummy_value);
EXPECT_TRUE(scoper1);
EXPECT_EQ(&dummy_value, scoper1.get());
EXPECT_FALSE(scoper2);
EXPECT_FALSE(scoper2.get());
EXPECT_FALSE(scoper1.get() == scoper2.get());
EXPECT_TRUE(scoper1.get() != scoper2.get());
scoper2.swap(scoper1);
EXPECT_EQ(&dummy_value, scoper2.get());
EXPECT_FALSE(scoper1.get());
EXPECT_FALSE(scoper1.get() == scoper2.get());
EXPECT_TRUE(scoper1.get() != scoper2.get());
}
}
// Sanity check test for overloaded new and delete operators. Does not do full
// coverage of reset/release/move operations as that is redundant with the
// above.
TEST(ScopedPtrTest, OverloadedNewAndDelete) {
{
OverloadedNewAndDelete::ResetCounters();
scoped_ptr<OverloadedNewAndDelete> scoper(new OverloadedNewAndDelete());
EXPECT_TRUE(scoper.get());
scoped_ptr<OverloadedNewAndDelete> scoper2(std::move(scoper));
}
EXPECT_EQ(1, OverloadedNewAndDelete::delete_count());
EXPECT_EQ(1, OverloadedNewAndDelete::new_count());
}
scoped_ptr<int> NullIntReturn() {
return nullptr;
}
TEST(ScopedPtrTest, Nullptr) {
scoped_ptr<int> scoper1(nullptr);
scoped_ptr<int> scoper2(new int);
scoper2 = nullptr;
scoped_ptr<int> scoper3(NullIntReturn());
scoped_ptr<int> scoper4 = NullIntReturn();
EXPECT_EQ(nullptr, scoper1.get());
EXPECT_EQ(nullptr, scoper2.get());
EXPECT_EQ(nullptr, scoper3.get());
EXPECT_EQ(nullptr, scoper4.get());
}
scoped_ptr<int[]> NullIntArrayReturn() {
return nullptr;
}
TEST(ScopedPtrTest, NullptrArray) {
scoped_ptr<int[]> scoper1(nullptr);
scoped_ptr<int[]> scoper2(new int[3]);
scoper2 = nullptr;
scoped_ptr<int[]> scoper3(NullIntArrayReturn());
scoped_ptr<int[]> scoper4 = NullIntArrayReturn();
EXPECT_EQ(nullptr, scoper1.get());
EXPECT_EQ(nullptr, scoper2.get());
EXPECT_EQ(nullptr, scoper3.get());
EXPECT_EQ(nullptr, scoper4.get());
}
class Super {};
class Sub : public Super {};
scoped_ptr<Sub> SubClassReturn() {
return make_scoped_ptr(new Sub);
}
TEST(ScopedPtrTest, Conversion) {
scoped_ptr<Sub> sub1(new Sub);
scoped_ptr<Sub> sub2(new Sub);
// Upcast with move works.
scoped_ptr<Super> super1 = std::move(sub1);
super1 = std::move(sub2);
// Upcast with an rvalue works.
scoped_ptr<Super> super2 = SubClassReturn();
super2 = SubClassReturn();
}
// Logging a scoped_ptr<T> to an ostream shouldn't convert it to a boolean
// value first.
TEST(ScopedPtrTest, LoggingDoesntConvertToBoolean) {
scoped_ptr<int> x(new int);
std::stringstream s1;
s1 << x;
std::stringstream s2;
s2 << x.get();
EXPECT_EQ(s2.str(), s1.str());
}
TEST(ScopedPtrTest, ReferenceCycle) {
struct StructB;
struct StructA {
scoped_ptr<StructB> b;
};
struct StructB {
scoped_ptr<StructA> a;
};
// Create a reference cycle.
StructA* a = new StructA;
a->b.reset(new StructB);
a->b->a.reset(a);
// Break the cycle by calling reset(). This will cause |a| (and hence, |a->b|)
// to be deleted before the call to reset() returns. This tests that the
// implementation of scoped_ptr::reset() doesn't access |this| after it
// deletes the underlying pointer. This behaviour is consistent with the
// definition of unique_ptr::reset in C++11.
a->b.reset();
// Go again, but this time, break the cycle by invoking |a|'s destructor. This
// tests that the implementation of ~scoped_ptr doesn't infinitely recurse
// into the destructors of |a| and |a->b|. Note, deleting |a| instead will
// cause |a| to be double-free'd because |a->b| owns |a| and deletes it via
// its destructor.
a = new StructA;
a->b.reset(new StructB);
a->b->a.reset(a);
a->~StructA();
}
TEST(ScopedPtrTest, Operators) {
struct Parent {};
struct Child : public Parent {};
scoped_ptr<Parent> p(new Parent);
scoped_ptr<Parent> p2(new Parent);
scoped_ptr<Child> c(new Child);
scoped_ptr<Parent> pnull;
// Operator==.
EXPECT_TRUE(p == p);
EXPECT_FALSE(p == c);
EXPECT_FALSE(p == p2);
EXPECT_FALSE(p == pnull);
EXPECT_FALSE(p == nullptr);
EXPECT_FALSE(nullptr == p);
EXPECT_TRUE(pnull == nullptr);
EXPECT_TRUE(nullptr == pnull);
// Operator!=.
EXPECT_FALSE(p != p);
EXPECT_TRUE(p != c);
EXPECT_TRUE(p != p2);
EXPECT_TRUE(p != pnull);
EXPECT_TRUE(p != nullptr);
EXPECT_TRUE(nullptr != p);
EXPECT_FALSE(pnull != nullptr);
EXPECT_FALSE(nullptr != pnull);
// Compare two scoped_ptr<T>.
EXPECT_EQ(p.get() < p2.get(), p < p2);
EXPECT_EQ(p.get() <= p2.get(), p <= p2);
EXPECT_EQ(p.get() > p2.get(), p > p2);
EXPECT_EQ(p.get() >= p2.get(), p >= p2);
EXPECT_EQ(p2.get() < p.get(), p2 < p);
EXPECT_EQ(p2.get() <= p.get(), p2 <= p);
EXPECT_EQ(p2.get() > p.get(), p2 > p);
EXPECT_EQ(p2.get() >= p.get(), p2 >= p);
// And convertible scoped_ptr<T> and scoped_ptr<U>.
EXPECT_EQ(p.get() < c.get(), p < c);
EXPECT_EQ(p.get() <= c.get(), p <= c);
EXPECT_EQ(p.get() > c.get(), p > c);
EXPECT_EQ(p.get() >= c.get(), p >= c);
EXPECT_EQ(c.get() < p.get(), c < p);
EXPECT_EQ(c.get() <= p.get(), c <= p);
EXPECT_EQ(c.get() > p.get(), c > p);
EXPECT_EQ(c.get() >= p.get(), c >= p);
// Compare to nullptr.
EXPECT_TRUE(p > nullptr);
EXPECT_FALSE(nullptr > p);
EXPECT_FALSE(pnull > nullptr);
EXPECT_FALSE(nullptr > pnull);
EXPECT_TRUE(p >= nullptr);
EXPECT_FALSE(nullptr >= p);
EXPECT_TRUE(pnull >= nullptr);
EXPECT_TRUE(nullptr >= pnull);
EXPECT_FALSE(p < nullptr);
EXPECT_TRUE(nullptr < p);
EXPECT_FALSE(pnull < nullptr);
EXPECT_FALSE(nullptr < pnull);
EXPECT_FALSE(p <= nullptr);
EXPECT_TRUE(nullptr <= p);
EXPECT_TRUE(pnull <= nullptr);
EXPECT_TRUE(nullptr <= pnull);
};
TEST(ScopedPtrTest, ArrayOperators) {
struct Parent {};
struct Child : public Parent {};
scoped_ptr<Parent[]> p(new Parent[1]);
scoped_ptr<Parent[]> p2(new Parent[1]);
scoped_ptr<Child[]> c(new Child[1]);
scoped_ptr<Parent[]> pnull;
// Operator==.
EXPECT_TRUE(p == p);
EXPECT_FALSE(p == c);
EXPECT_FALSE(p == p2);
EXPECT_FALSE(p == pnull);
EXPECT_FALSE(p == nullptr);
EXPECT_FALSE(nullptr == p);
EXPECT_TRUE(pnull == nullptr);
EXPECT_TRUE(nullptr == pnull);
// Operator!=.
EXPECT_FALSE(p != p);
EXPECT_TRUE(p != c);
EXPECT_TRUE(p != p2);
EXPECT_TRUE(p != pnull);
EXPECT_TRUE(p != nullptr);
EXPECT_TRUE(nullptr != p);
EXPECT_FALSE(pnull != nullptr);
EXPECT_FALSE(nullptr != pnull);
// Compare two scoped_ptr<T>.
EXPECT_EQ(p.get() < p2.get(), p < p2);
EXPECT_EQ(p.get() <= p2.get(), p <= p2);
EXPECT_EQ(p.get() > p2.get(), p > p2);
EXPECT_EQ(p.get() >= p2.get(), p >= p2);
EXPECT_EQ(p2.get() < p.get(), p2 < p);
EXPECT_EQ(p2.get() <= p.get(), p2 <= p);
EXPECT_EQ(p2.get() > p.get(), p2 > p);
EXPECT_EQ(p2.get() >= p.get(), p2 >= p);
// And convertible scoped_ptr<T> and scoped_ptr<U>.
EXPECT_EQ(p.get() < c.get(), p < c);
EXPECT_EQ(p.get() <= c.get(), p <= c);
EXPECT_EQ(p.get() > c.get(), p > c);
EXPECT_EQ(p.get() >= c.get(), p >= c);
EXPECT_EQ(c.get() < p.get(), c < p);
EXPECT_EQ(c.get() <= p.get(), c <= p);
EXPECT_EQ(c.get() > p.get(), c > p);
EXPECT_EQ(c.get() >= p.get(), c >= p);
// Compare to nullptr.
EXPECT_TRUE(p > nullptr);
EXPECT_FALSE(nullptr > p);
EXPECT_FALSE(pnull > nullptr);
EXPECT_FALSE(nullptr > pnull);
EXPECT_TRUE(p >= nullptr);
EXPECT_FALSE(nullptr >= p);
EXPECT_TRUE(pnull >= nullptr);
EXPECT_TRUE(nullptr >= pnull);
EXPECT_FALSE(p < nullptr);
EXPECT_TRUE(nullptr < p);
EXPECT_FALSE(pnull < nullptr);
EXPECT_FALSE(nullptr < pnull);
EXPECT_FALSE(p <= nullptr);
EXPECT_TRUE(nullptr <= p);
EXPECT_TRUE(pnull <= nullptr);
EXPECT_TRUE(nullptr <= pnull);
}