blob: 43373e764a8a64aa80476985534f56d96a83eb76 [file] [log] [blame]
// Copyright (c) 2012 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "base/time/time.h"
#include <stdint.h>
#include <time.h>
#include <limits>
#include <string>
#include <gtest/gtest.h>
#include "base/compiler_specific.h"
#include "base/logging.h"
#include "base/strings/stringprintf.h"
#include "base/build/build_config.h"
namespace base {
namespace {
// Specialized test fixture allowing time strings without timezones to be
// tested by comparing them to a known time in the local zone.
// See also pr_time_unittests.cc
class TimeTest : public testing::Test {
protected:
void SetUp() override {
// Use mktime to get a time_t, and turn it into a PRTime by converting
// seconds to microseconds. Use 15th Oct 2007 12:45:00 local. This
// must be a time guaranteed to be outside of a DST fallback hour in
// any timezone.
struct tm local_comparison_tm = {
0, // second
45, // minute
12, // hour
15, // day of month
10 - 1, // month
2007 - 1900, // year
0, // day of week (ignored, output only)
0, // day of year (ignored, output only)
-1 // DST in effect, -1 tells mktime to figure it out
};
time_t converted_time = mktime(&local_comparison_tm);
ASSERT_GT(converted_time, 0);
comparison_time_local_ = Time::FromTimeT(converted_time);
// time_t representation of 15th Oct 2007 12:45:00 PDT
comparison_time_pdt_ = Time::FromTimeT(1192477500);
}
Time comparison_time_local_;
Time comparison_time_pdt_;
};
// Test conversions to/from time_t and exploding/unexploding.
TEST_F(TimeTest, TimeT) {
// C library time and exploded time.
time_t now_t_1 = time(NULL);
struct tm tms;
#if defined(OS_WIN)
localtime_s(&tms, &now_t_1);
#elif defined(OS_POSIX)
localtime_r(&now_t_1, &tms);
#endif
// Convert to ours.
Time our_time_1 = Time::FromTimeT(now_t_1);
Time::Exploded exploded;
our_time_1.LocalExplode(&exploded);
// This will test both our exploding and our time_t -> Time conversion.
EXPECT_EQ(tms.tm_year + 1900, exploded.year);
EXPECT_EQ(tms.tm_mon + 1, exploded.month);
EXPECT_EQ(tms.tm_mday, exploded.day_of_month);
EXPECT_EQ(tms.tm_hour, exploded.hour);
EXPECT_EQ(tms.tm_min, exploded.minute);
EXPECT_EQ(tms.tm_sec, exploded.second);
// Convert exploded back to the time struct.
Time our_time_2 = Time::FromLocalExploded(exploded);
EXPECT_TRUE(our_time_1 == our_time_2);
time_t now_t_2 = our_time_2.ToTimeT();
EXPECT_EQ(now_t_1, now_t_2);
EXPECT_EQ(10, Time().FromTimeT(10).ToTimeT());
EXPECT_EQ(10.0, Time().FromTimeT(10).ToDoubleT());
// Conversions of 0 should stay 0.
EXPECT_EQ(0, Time().ToTimeT());
EXPECT_EQ(0, Time::FromTimeT(0).ToInternalValue());
}
// Test conversions to/from javascript time.
TEST_F(TimeTest, JsTime) {
Time epoch = Time::FromJsTime(0.0);
EXPECT_EQ(epoch, Time::UnixEpoch());
Time t = Time::FromJsTime(700000.3);
EXPECT_EQ(700.0003, t.ToDoubleT());
t = Time::FromDoubleT(800.73);
EXPECT_EQ(800730.0, t.ToJsTime());
}
#if defined(OS_POSIX)
TEST_F(TimeTest, FromTimeVal) {
Time now = Time::Now();
Time also_now = Time::FromTimeVal(now.ToTimeVal());
EXPECT_EQ(now, also_now);
}
#endif // OS_POSIX
TEST_F(TimeTest, FromExplodedWithMilliseconds) {
// Some platform implementations of FromExploded are liable to drop
// milliseconds if we aren't careful.
Time now = Time::NowFromSystemTime();
Time::Exploded exploded1 = {0};
now.UTCExplode(&exploded1);
exploded1.millisecond = 500;
Time time = Time::FromUTCExploded(exploded1);
Time::Exploded exploded2 = {0};
time.UTCExplode(&exploded2);
EXPECT_EQ(exploded1.millisecond, exploded2.millisecond);
}
TEST_F(TimeTest, ZeroIsSymmetric) {
Time zero_time(Time::FromTimeT(0));
EXPECT_EQ(0, zero_time.ToTimeT());
EXPECT_EQ(0.0, zero_time.ToDoubleT());
}
TEST_F(TimeTest, LocalExplode) {
Time a = Time::Now();
Time::Exploded exploded;
a.LocalExplode(&exploded);
Time b = Time::FromLocalExploded(exploded);
// The exploded structure doesn't have microseconds, and on Mac & Linux, the
// internal OS conversion uses seconds, which will cause truncation. So we
// can only make sure that the delta is within one second.
EXPECT_TRUE((a - b) < TimeDelta::FromSeconds(1));
}
TEST_F(TimeTest, UTCExplode) {
Time a = Time::Now();
Time::Exploded exploded;
a.UTCExplode(&exploded);
Time b = Time::FromUTCExploded(exploded);
EXPECT_TRUE((a - b) < TimeDelta::FromSeconds(1));
}
TEST_F(TimeTest, LocalMidnight) {
Time::Exploded exploded;
Time::Now().LocalMidnight().LocalExplode(&exploded);
EXPECT_EQ(0, exploded.hour);
EXPECT_EQ(0, exploded.minute);
EXPECT_EQ(0, exploded.second);
EXPECT_EQ(0, exploded.millisecond);
}
TEST_F(TimeTest, ExplodeBeforeUnixEpoch) {
static const int kUnixEpochYear = 1970; // In case this changes (ha!).
Time t;
Time::Exploded exploded;
t = Time::UnixEpoch() - TimeDelta::FromMicroseconds(1);
t.UTCExplode(&exploded);
EXPECT_TRUE(exploded.HasValidValues());
// Should be 1969-12-31 23:59:59 999 milliseconds (and 999 microseconds).
EXPECT_EQ(kUnixEpochYear - 1, exploded.year);
EXPECT_EQ(12, exploded.month);
EXPECT_EQ(31, exploded.day_of_month);
EXPECT_EQ(23, exploded.hour);
EXPECT_EQ(59, exploded.minute);
EXPECT_EQ(59, exploded.second);
EXPECT_EQ(999, exploded.millisecond);
t = Time::UnixEpoch() - TimeDelta::FromMicroseconds(1000);
t.UTCExplode(&exploded);
EXPECT_TRUE(exploded.HasValidValues());
// Should be 1969-12-31 23:59:59 999 milliseconds.
EXPECT_EQ(kUnixEpochYear - 1, exploded.year);
EXPECT_EQ(12, exploded.month);
EXPECT_EQ(31, exploded.day_of_month);
EXPECT_EQ(23, exploded.hour);
EXPECT_EQ(59, exploded.minute);
EXPECT_EQ(59, exploded.second);
EXPECT_EQ(999, exploded.millisecond);
t = Time::UnixEpoch() - TimeDelta::FromMicroseconds(1001);
t.UTCExplode(&exploded);
EXPECT_TRUE(exploded.HasValidValues());
// Should be 1969-12-31 23:59:59 998 milliseconds (and 999 microseconds).
EXPECT_EQ(kUnixEpochYear - 1, exploded.year);
EXPECT_EQ(12, exploded.month);
EXPECT_EQ(31, exploded.day_of_month);
EXPECT_EQ(23, exploded.hour);
EXPECT_EQ(59, exploded.minute);
EXPECT_EQ(59, exploded.second);
EXPECT_EQ(998, exploded.millisecond);
t = Time::UnixEpoch() - TimeDelta::FromMilliseconds(1000);
t.UTCExplode(&exploded);
EXPECT_TRUE(exploded.HasValidValues());
// Should be 1969-12-31 23:59:59.
EXPECT_EQ(kUnixEpochYear - 1, exploded.year);
EXPECT_EQ(12, exploded.month);
EXPECT_EQ(31, exploded.day_of_month);
EXPECT_EQ(23, exploded.hour);
EXPECT_EQ(59, exploded.minute);
EXPECT_EQ(59, exploded.second);
EXPECT_EQ(0, exploded.millisecond);
t = Time::UnixEpoch() - TimeDelta::FromMilliseconds(1001);
t.UTCExplode(&exploded);
EXPECT_TRUE(exploded.HasValidValues());
// Should be 1969-12-31 23:59:58 999 milliseconds.
EXPECT_EQ(kUnixEpochYear - 1, exploded.year);
EXPECT_EQ(12, exploded.month);
EXPECT_EQ(31, exploded.day_of_month);
EXPECT_EQ(23, exploded.hour);
EXPECT_EQ(59, exploded.minute);
EXPECT_EQ(58, exploded.second);
EXPECT_EQ(999, exploded.millisecond);
// Make sure we still handle at/after Unix epoch correctly.
t = Time::UnixEpoch();
t.UTCExplode(&exploded);
EXPECT_TRUE(exploded.HasValidValues());
// Should be 1970-12-31 00:00:00 0 milliseconds.
EXPECT_EQ(kUnixEpochYear, exploded.year);
EXPECT_EQ(1, exploded.month);
EXPECT_EQ(1, exploded.day_of_month);
EXPECT_EQ(0, exploded.hour);
EXPECT_EQ(0, exploded.minute);
EXPECT_EQ(0, exploded.second);
EXPECT_EQ(0, exploded.millisecond);
t = Time::UnixEpoch() + TimeDelta::FromMicroseconds(1);
t.UTCExplode(&exploded);
EXPECT_TRUE(exploded.HasValidValues());
// Should be 1970-01-01 00:00:00 0 milliseconds (and 1 microsecond).
EXPECT_EQ(kUnixEpochYear, exploded.year);
EXPECT_EQ(1, exploded.month);
EXPECT_EQ(1, exploded.day_of_month);
EXPECT_EQ(0, exploded.hour);
EXPECT_EQ(0, exploded.minute);
EXPECT_EQ(0, exploded.second);
EXPECT_EQ(0, exploded.millisecond);
t = Time::UnixEpoch() + TimeDelta::FromMicroseconds(1000);
t.UTCExplode(&exploded);
EXPECT_TRUE(exploded.HasValidValues());
// Should be 1970-01-01 00:00:00 1 millisecond.
EXPECT_EQ(kUnixEpochYear, exploded.year);
EXPECT_EQ(1, exploded.month);
EXPECT_EQ(1, exploded.day_of_month);
EXPECT_EQ(0, exploded.hour);
EXPECT_EQ(0, exploded.minute);
EXPECT_EQ(0, exploded.second);
EXPECT_EQ(1, exploded.millisecond);
t = Time::UnixEpoch() + TimeDelta::FromMilliseconds(1000);
t.UTCExplode(&exploded);
EXPECT_TRUE(exploded.HasValidValues());
// Should be 1970-01-01 00:00:01.
EXPECT_EQ(kUnixEpochYear, exploded.year);
EXPECT_EQ(1, exploded.month);
EXPECT_EQ(1, exploded.day_of_month);
EXPECT_EQ(0, exploded.hour);
EXPECT_EQ(0, exploded.minute);
EXPECT_EQ(1, exploded.second);
EXPECT_EQ(0, exploded.millisecond);
t = Time::UnixEpoch() + TimeDelta::FromMilliseconds(1001);
t.UTCExplode(&exploded);
EXPECT_TRUE(exploded.HasValidValues());
// Should be 1970-01-01 00:00:01 1 millisecond.
EXPECT_EQ(kUnixEpochYear, exploded.year);
EXPECT_EQ(1, exploded.month);
EXPECT_EQ(1, exploded.day_of_month);
EXPECT_EQ(0, exploded.hour);
EXPECT_EQ(0, exploded.minute);
EXPECT_EQ(1, exploded.second);
EXPECT_EQ(1, exploded.millisecond);
}
TEST_F(TimeTest, TimeDeltaMax) {
TimeDelta max = TimeDelta::Max();
EXPECT_TRUE(max.is_max());
EXPECT_EQ(max, TimeDelta::Max());
EXPECT_GT(max, TimeDelta::FromDays(100 * 365));
EXPECT_GT(max, TimeDelta());
}
TEST_F(TimeTest, TimeDeltaMaxConversions) {
TimeDelta t = TimeDelta::Max();
EXPECT_EQ(std::numeric_limits<int64>::max(), t.ToInternalValue());
EXPECT_EQ(std::numeric_limits<int>::max(), t.InDays());
EXPECT_EQ(std::numeric_limits<int>::max(), t.InHours());
EXPECT_EQ(std::numeric_limits<int>::max(), t.InMinutes());
EXPECT_EQ(std::numeric_limits<double>::infinity(), t.InSecondsF());
EXPECT_EQ(std::numeric_limits<int64>::max(), t.InSeconds());
EXPECT_EQ(std::numeric_limits<double>::infinity(), t.InMillisecondsF());
EXPECT_EQ(std::numeric_limits<int64>::max(), t.InMilliseconds());
EXPECT_EQ(std::numeric_limits<int64>::max(), t.InMillisecondsRoundedUp());
t = TimeDelta::FromDays(std::numeric_limits<int>::max());
EXPECT_TRUE(t.is_max());
t = TimeDelta::FromHours(std::numeric_limits<int>::max());
EXPECT_TRUE(t.is_max());
t = TimeDelta::FromMinutes(std::numeric_limits<int>::max());
EXPECT_TRUE(t.is_max());
t = TimeDelta::FromSeconds(std::numeric_limits<int64>::max());
EXPECT_TRUE(t.is_max());
t = TimeDelta::FromMilliseconds(std::numeric_limits<int64>::max());
EXPECT_TRUE(t.is_max());
t = TimeDelta::FromSecondsD(std::numeric_limits<double>::infinity());
EXPECT_TRUE(t.is_max());
t = TimeDelta::FromMillisecondsD(std::numeric_limits<double>::infinity());
EXPECT_TRUE(t.is_max());
t = TimeDelta::FromMicroseconds(std::numeric_limits<int64>::max());
EXPECT_TRUE(t.is_max());
}
TEST_F(TimeTest, Max) {
Time max = Time::Max();
EXPECT_TRUE(max.is_max());
EXPECT_EQ(max, Time::Max());
EXPECT_GT(max, Time::Now());
EXPECT_GT(max, Time());
}
TEST_F(TimeTest, MaxConversions) {
Time t = Time::Max();
EXPECT_EQ(std::numeric_limits<int64>::max(), t.ToInternalValue());
t = Time::FromDoubleT(std::numeric_limits<double>::infinity());
EXPECT_TRUE(t.is_max());
EXPECT_EQ(std::numeric_limits<double>::infinity(), t.ToDoubleT());
t = Time::FromJsTime(std::numeric_limits<double>::infinity());
EXPECT_TRUE(t.is_max());
EXPECT_EQ(std::numeric_limits<double>::infinity(), t.ToJsTime());
t = Time::FromTimeT(std::numeric_limits<time_t>::max());
EXPECT_TRUE(t.is_max());
EXPECT_EQ(std::numeric_limits<time_t>::max(), t.ToTimeT());
#if defined(OS_POSIX)
struct timeval tval;
tval.tv_sec = std::numeric_limits<time_t>::max();
tval.tv_usec = static_cast<suseconds_t>(Time::kMicrosecondsPerSecond) - 1;
t = Time::FromTimeVal(tval);
EXPECT_TRUE(t.is_max());
tval = t.ToTimeVal();
EXPECT_EQ(std::numeric_limits<time_t>::max(), tval.tv_sec);
EXPECT_EQ(static_cast<suseconds_t>(Time::kMicrosecondsPerSecond) - 1,
tval.tv_usec);
#endif
#if defined(OS_MACOSX)
t = Time::FromCFAbsoluteTime(std::numeric_limits<CFAbsoluteTime>::infinity());
EXPECT_TRUE(t.is_max());
EXPECT_EQ(std::numeric_limits<CFAbsoluteTime>::infinity(),
t.ToCFAbsoluteTime());
#endif
#if defined(OS_WIN)
FILETIME ftime;
ftime.dwHighDateTime = std::numeric_limits<DWORD>::max();
ftime.dwLowDateTime = std::numeric_limits<DWORD>::max();
t = Time::FromFileTime(ftime);
EXPECT_TRUE(t.is_max());
ftime = t.ToFileTime();
EXPECT_EQ(std::numeric_limits<DWORD>::max(), ftime.dwHighDateTime);
EXPECT_EQ(std::numeric_limits<DWORD>::max(), ftime.dwLowDateTime);
#endif
}
#if defined(OS_MACOSX)
TEST_F(TimeTest, TimeTOverflow) {
Time t = Time::FromInternalValue(std::numeric_limits<int64>::max() - 1);
EXPECT_FALSE(t.is_max());
EXPECT_EQ(std::numeric_limits<time_t>::max(), t.ToTimeT());
}
#endif
#if defined(OS_ANDROID)
TEST_F(TimeTest, FromLocalExplodedCrashOnAndroid) {
// This crashed inside Time:: FromLocalExploded() on Android 4.1.2.
// See http://crbug.com/287821
Time::Exploded midnight = {2013, // year
10, // month
0, // day_of_week
13, // day_of_month
0, // hour
0, // minute
0, // second
};
// The string passed to putenv() must be a char* and the documentation states
// that it 'becomes part of the environment', so use a static buffer.
static char buffer[] = "TZ=America/Santiago";
putenv(buffer);
tzset();
Time t = Time::FromLocalExploded(midnight);
EXPECT_EQ(1381633200, t.ToTimeT());
}
#endif // OS_ANDROID
static void HighResClockTest(TimeTicks (*GetTicks)()) {
// IsHighResolution() is false on some systems. Since the product still works
// even if it's false, it makes this entire test questionable.
if (!TimeTicks::IsHighResolution())
return;
// Why do we loop here?
// We're trying to measure that intervals increment in a VERY small amount
// of time -- less than 15ms. Unfortunately, if we happen to have a
// context switch in the middle of our test, the context switch could easily
// exceed our limit. So, we iterate on this several times. As long as we're
// able to detect the fine-granularity timers at least once, then the test
// has succeeded.
const int kTargetGranularityUs = 15000; // 15ms
bool success = false;
int retries = 100; // Arbitrary.
TimeDelta delta;
while (!success && retries--) {
TimeTicks ticks_start = GetTicks();
// Loop until we can detect that the clock has changed. Non-HighRes timers
// will increment in chunks, e.g. 15ms. By spinning until we see a clock
// change, we detect the minimum time between measurements.
do {
delta = GetTicks() - ticks_start;
} while (delta.InMilliseconds() == 0);
if (delta.InMicroseconds() <= kTargetGranularityUs)
success = true;
}
// In high resolution mode, we expect to see the clock increment
// in intervals less than 15ms.
EXPECT_TRUE(success);
}
TEST(TimeTicks, HighRes) {
HighResClockTest(&TimeTicks::Now);
}
TEST(TraceTicks, NowFromSystemTraceTime) {
// Re-use HighRes test for now since clock properties are identical.
using NowFunction = TimeTicks (*)(void);
HighResClockTest(reinterpret_cast<NowFunction>(&TraceTicks::Now));
}
TEST(TimeTicks, SnappedToNextTickBasic) {
base::TimeTicks phase = base::TimeTicks::FromInternalValue(4000);
base::TimeDelta interval = base::TimeDelta::FromMicroseconds(1000);
base::TimeTicks timestamp;
// Timestamp in previous interval.
timestamp = base::TimeTicks::FromInternalValue(3500);
EXPECT_EQ(4000,
timestamp.SnappedToNextTick(phase, interval).ToInternalValue());
// Timestamp in next interval.
timestamp = base::TimeTicks::FromInternalValue(4500);
EXPECT_EQ(5000,
timestamp.SnappedToNextTick(phase, interval).ToInternalValue());
// Timestamp multiple intervals before.
timestamp = base::TimeTicks::FromInternalValue(2500);
EXPECT_EQ(3000,
timestamp.SnappedToNextTick(phase, interval).ToInternalValue());
// Timestamp multiple intervals after.
timestamp = base::TimeTicks::FromInternalValue(6500);
EXPECT_EQ(7000,
timestamp.SnappedToNextTick(phase, interval).ToInternalValue());
// Timestamp on previous interval.
timestamp = base::TimeTicks::FromInternalValue(3000);
EXPECT_EQ(3000,
timestamp.SnappedToNextTick(phase, interval).ToInternalValue());
// Timestamp on next interval.
timestamp = base::TimeTicks::FromInternalValue(5000);
EXPECT_EQ(5000,
timestamp.SnappedToNextTick(phase, interval).ToInternalValue());
// Timestamp equal to phase.
timestamp = base::TimeTicks::FromInternalValue(4000);
EXPECT_EQ(4000,
timestamp.SnappedToNextTick(phase, interval).ToInternalValue());
}
TEST(TimeTicks, SnappedToNextTickOverflow) {
// int(big_timestamp / interval) < 0, so this causes a crash if the number of
// intervals elapsed is attempted to be stored in an int.
base::TimeTicks phase = base::TimeTicks::FromInternalValue(0);
base::TimeDelta interval = base::TimeDelta::FromMicroseconds(4000);
base::TimeTicks big_timestamp =
base::TimeTicks::FromInternalValue(8635916564000);
EXPECT_EQ(8635916564000,
big_timestamp.SnappedToNextTick(phase, interval).ToInternalValue());
EXPECT_EQ(8635916564000,
big_timestamp.SnappedToNextTick(big_timestamp, interval)
.ToInternalValue());
}
TEST(TimeDelta, FromAndIn) {
EXPECT_TRUE(TimeDelta::FromDays(2) == TimeDelta::FromHours(48));
EXPECT_TRUE(TimeDelta::FromHours(3) == TimeDelta::FromMinutes(180));
EXPECT_TRUE(TimeDelta::FromMinutes(2) == TimeDelta::FromSeconds(120));
EXPECT_TRUE(TimeDelta::FromSeconds(2) == TimeDelta::FromMilliseconds(2000));
EXPECT_TRUE(TimeDelta::FromMilliseconds(2) ==
TimeDelta::FromMicroseconds(2000));
EXPECT_TRUE(TimeDelta::FromSecondsD(2.3) ==
TimeDelta::FromMilliseconds(2300));
EXPECT_TRUE(TimeDelta::FromMillisecondsD(2.5) ==
TimeDelta::FromMicroseconds(2500));
EXPECT_EQ(13, TimeDelta::FromDays(13).InDays());
EXPECT_EQ(13, TimeDelta::FromHours(13).InHours());
EXPECT_EQ(13, TimeDelta::FromMinutes(13).InMinutes());
EXPECT_EQ(13, TimeDelta::FromSeconds(13).InSeconds());
EXPECT_EQ(13.0, TimeDelta::FromSeconds(13).InSecondsF());
EXPECT_EQ(13, TimeDelta::FromMilliseconds(13).InMilliseconds());
EXPECT_EQ(13.0, TimeDelta::FromMilliseconds(13).InMillisecondsF());
EXPECT_EQ(13, TimeDelta::FromSecondsD(13.1).InSeconds());
EXPECT_EQ(13.1, TimeDelta::FromSecondsD(13.1).InSecondsF());
EXPECT_EQ(13, TimeDelta::FromMillisecondsD(13.3).InMilliseconds());
EXPECT_EQ(13.3, TimeDelta::FromMillisecondsD(13.3).InMillisecondsF());
EXPECT_EQ(13, TimeDelta::FromMicroseconds(13).InMicroseconds());
}
#if defined(OS_POSIX)
TEST(TimeDelta, TimeSpecConversion) {
struct timespec result = TimeDelta::FromSeconds(0).ToTimeSpec();
EXPECT_EQ(result.tv_sec, 0);
EXPECT_EQ(result.tv_nsec, 0);
result = TimeDelta::FromSeconds(1).ToTimeSpec();
EXPECT_EQ(result.tv_sec, 1);
EXPECT_EQ(result.tv_nsec, 0);
result = TimeDelta::FromMicroseconds(1).ToTimeSpec();
EXPECT_EQ(result.tv_sec, 0);
EXPECT_EQ(result.tv_nsec, 1000);
result = TimeDelta::FromMicroseconds(
Time::kMicrosecondsPerSecond + 1).ToTimeSpec();
EXPECT_EQ(result.tv_sec, 1);
EXPECT_EQ(result.tv_nsec, 1000);
}
#endif // OS_POSIX
// Our internal time format is serialized in things like databases, so it's
// important that it's consistent across all our platforms. We use the 1601
// Windows epoch as the internal format across all platforms.
TEST(TimeDelta, WindowsEpoch) {
Time::Exploded exploded;
exploded.year = 1970;
exploded.month = 1;
exploded.day_of_week = 0; // Should be unusued.
exploded.day_of_month = 1;
exploded.hour = 0;
exploded.minute = 0;
exploded.second = 0;
exploded.millisecond = 0;
Time t = Time::FromUTCExploded(exploded);
// Unix 1970 epoch.
EXPECT_EQ(INT64_C(11644473600000000), t.ToInternalValue());
// We can't test 1601 epoch, since the system time functions on Linux
// only compute years starting from 1900.
}
// We could define this separately for Time, TimeTicks and TimeDelta but the
// definitions would be identical anyway.
template <class Any>
std::string AnyToString(Any any) {
std::ostringstream oss;
oss << any;
return oss.str();
}
TEST(TimeDelta, Magnitude) {
const int64 zero = 0;
EXPECT_EQ(TimeDelta::FromMicroseconds(zero),
TimeDelta::FromMicroseconds(zero).magnitude());
const int64 one = 1;
const int64 negative_one = -1;
EXPECT_EQ(TimeDelta::FromMicroseconds(one),
TimeDelta::FromMicroseconds(one).magnitude());
EXPECT_EQ(TimeDelta::FromMicroseconds(one),
TimeDelta::FromMicroseconds(negative_one).magnitude());
const int64 max_int64_minus_one = std::numeric_limits<int64>::max() - 1;
const int64 min_int64_plus_two = std::numeric_limits<int64>::min() + 2;
EXPECT_EQ(TimeDelta::FromMicroseconds(max_int64_minus_one),
TimeDelta::FromMicroseconds(max_int64_minus_one).magnitude());
EXPECT_EQ(TimeDelta::FromMicroseconds(max_int64_minus_one),
TimeDelta::FromMicroseconds(min_int64_plus_two).magnitude());
}
TEST(TimeDelta, NumericOperators) {
double d = 0.5;
EXPECT_EQ(TimeDelta::FromMilliseconds(500),
TimeDelta::FromMilliseconds(1000) * d);
EXPECT_EQ(TimeDelta::FromMilliseconds(2000),
TimeDelta::FromMilliseconds(1000) / d);
EXPECT_EQ(TimeDelta::FromMilliseconds(500),
TimeDelta::FromMilliseconds(1000) *= d);
EXPECT_EQ(TimeDelta::FromMilliseconds(2000),
TimeDelta::FromMilliseconds(1000) /= d);
EXPECT_EQ(TimeDelta::FromMilliseconds(500),
d * TimeDelta::FromMilliseconds(1000));
float f = 0.5;
EXPECT_EQ(TimeDelta::FromMilliseconds(500),
TimeDelta::FromMilliseconds(1000) * f);
EXPECT_EQ(TimeDelta::FromMilliseconds(2000),
TimeDelta::FromMilliseconds(1000) / f);
EXPECT_EQ(TimeDelta::FromMilliseconds(500),
TimeDelta::FromMilliseconds(1000) *= f);
EXPECT_EQ(TimeDelta::FromMilliseconds(2000),
TimeDelta::FromMilliseconds(1000) /= f);
EXPECT_EQ(TimeDelta::FromMilliseconds(500),
f * TimeDelta::FromMilliseconds(1000));
int i = 2;
EXPECT_EQ(TimeDelta::FromMilliseconds(2000),
TimeDelta::FromMilliseconds(1000) * i);
EXPECT_EQ(TimeDelta::FromMilliseconds(500),
TimeDelta::FromMilliseconds(1000) / i);
EXPECT_EQ(TimeDelta::FromMilliseconds(2000),
TimeDelta::FromMilliseconds(1000) *= i);
EXPECT_EQ(TimeDelta::FromMilliseconds(500),
TimeDelta::FromMilliseconds(1000) /= i);
EXPECT_EQ(TimeDelta::FromMilliseconds(2000),
i * TimeDelta::FromMilliseconds(1000));
int64_t i64 = 2;
EXPECT_EQ(TimeDelta::FromMilliseconds(2000),
TimeDelta::FromMilliseconds(1000) * i64);
EXPECT_EQ(TimeDelta::FromMilliseconds(500),
TimeDelta::FromMilliseconds(1000) / i64);
EXPECT_EQ(TimeDelta::FromMilliseconds(2000),
TimeDelta::FromMilliseconds(1000) *= i64);
EXPECT_EQ(TimeDelta::FromMilliseconds(500),
TimeDelta::FromMilliseconds(1000) /= i64);
EXPECT_EQ(TimeDelta::FromMilliseconds(2000),
i64 * TimeDelta::FromMilliseconds(1000));
EXPECT_EQ(TimeDelta::FromMilliseconds(500),
TimeDelta::FromMilliseconds(1000) * 0.5);
EXPECT_EQ(TimeDelta::FromMilliseconds(2000),
TimeDelta::FromMilliseconds(1000) / 0.5);
EXPECT_EQ(TimeDelta::FromMilliseconds(500),
TimeDelta::FromMilliseconds(1000) *= 0.5);
EXPECT_EQ(TimeDelta::FromMilliseconds(2000),
TimeDelta::FromMilliseconds(1000) /= 0.5);
EXPECT_EQ(TimeDelta::FromMilliseconds(500),
0.5 * TimeDelta::FromMilliseconds(1000));
EXPECT_EQ(TimeDelta::FromMilliseconds(2000),
TimeDelta::FromMilliseconds(1000) * 2);
EXPECT_EQ(TimeDelta::FromMilliseconds(500),
TimeDelta::FromMilliseconds(1000) / 2);
EXPECT_EQ(TimeDelta::FromMilliseconds(2000),
TimeDelta::FromMilliseconds(1000) *= 2);
EXPECT_EQ(TimeDelta::FromMilliseconds(500),
TimeDelta::FromMilliseconds(1000) /= 2);
EXPECT_EQ(TimeDelta::FromMilliseconds(2000),
2 * TimeDelta::FromMilliseconds(1000));
}
bool IsMin(TimeDelta delta) {
return (-delta).is_max();
}
TEST(TimeDelta, Overflows) {
// Some sanity checks.
EXPECT_TRUE(TimeDelta::Max().is_max());
EXPECT_TRUE(IsMin(-TimeDelta::Max()));
EXPECT_GT(TimeDelta(), -TimeDelta::Max());
TimeDelta large_delta = TimeDelta::Max() - TimeDelta::FromMilliseconds(1);
TimeDelta large_negative = -large_delta;
EXPECT_GT(TimeDelta(), large_negative);
EXPECT_FALSE(large_delta.is_max());
EXPECT_FALSE(IsMin(-large_negative));
TimeDelta one_second = TimeDelta::FromSeconds(1);
// Test +, -, * and / operators.
EXPECT_TRUE((large_delta + one_second).is_max());
EXPECT_TRUE(IsMin(large_negative + (-one_second)));
EXPECT_TRUE(IsMin(large_negative - one_second));
EXPECT_TRUE((large_delta - (-one_second)).is_max());
EXPECT_TRUE((large_delta * 2).is_max());
EXPECT_TRUE(IsMin(large_delta * -2));
EXPECT_TRUE((large_delta / 0.5).is_max());
EXPECT_TRUE(IsMin(large_delta / -0.5));
// Test +=, -=, *= and /= operators.
TimeDelta delta = large_delta;
delta += one_second;
EXPECT_TRUE(delta.is_max());
delta = large_negative;
delta += -one_second;
EXPECT_TRUE(IsMin(delta));
delta = large_negative;
delta -= one_second;
EXPECT_TRUE(IsMin(delta));
delta = large_delta;
delta -= -one_second;
EXPECT_TRUE(delta.is_max());
delta = large_delta;
delta *= 2;
EXPECT_TRUE(delta.is_max());
delta = large_negative;
delta *= 1.5;
EXPECT_TRUE(IsMin(delta));
delta = large_delta;
delta /= 0.5;
EXPECT_TRUE(delta.is_max());
delta = large_negative;
delta /= 0.5;
EXPECT_TRUE(IsMin(delta));
// Test operations with Time and TimeTicks.
EXPECT_TRUE((large_delta + Time::Now()).is_max());
EXPECT_TRUE((large_delta + TimeTicks::Now()).is_max());
EXPECT_TRUE((Time::Now() + large_delta).is_max());
EXPECT_TRUE((TimeTicks::Now() + large_delta).is_max());
Time time_now = Time::Now();
EXPECT_EQ(one_second, (time_now + one_second) - time_now);
EXPECT_EQ(-one_second, (time_now - one_second) - time_now);
TimeTicks ticks_now = TimeTicks::Now();
EXPECT_EQ(-one_second, (ticks_now - one_second) - ticks_now);
EXPECT_EQ(one_second, (ticks_now + one_second) - ticks_now);
}
TEST(TimeDeltaLogging, DCheckEqCompiles) {
DCHECK_EQ(TimeDelta(), TimeDelta());
}
TEST(TimeDeltaLogging, EmptyIsZero) {
TimeDelta zero;
EXPECT_EQ("0s", AnyToString(zero));
}
TEST(TimeDeltaLogging, FiveHundredMs) {
TimeDelta five_hundred_ms = TimeDelta::FromMilliseconds(500);
EXPECT_EQ("0.5s", AnyToString(five_hundred_ms));
}
TEST(TimeDeltaLogging, MinusTenSeconds) {
TimeDelta minus_ten_seconds = TimeDelta::FromSeconds(-10);
EXPECT_EQ("-10s", AnyToString(minus_ten_seconds));
}
TEST(TimeDeltaLogging, DoesNotMessUpFormattingFlags) {
std::ostringstream oss;
std::ios_base::fmtflags flags_before = oss.flags();
oss << TimeDelta();
EXPECT_EQ(flags_before, oss.flags());
}
TEST(TimeDeltaLogging, DoesNotMakeStreamBad) {
std::ostringstream oss;
oss << TimeDelta();
EXPECT_TRUE(oss.good());
}
TEST(TimeLogging, DCheckEqCompiles) {
DCHECK_EQ(Time(), Time());
}
TEST(TimeLogging, DoesNotMessUpFormattingFlags) {
std::ostringstream oss;
std::ios_base::fmtflags flags_before = oss.flags();
oss << Time();
EXPECT_EQ(flags_before, oss.flags());
}
TEST(TimeLogging, DoesNotMakeStreamBad) {
std::ostringstream oss;
oss << Time();
EXPECT_TRUE(oss.good());
}
TEST(TimeTicksLogging, DCheckEqCompiles) {
DCHECK_EQ(TimeTicks(), TimeTicks());
}
TEST(TimeTicksLogging, ZeroTime) {
TimeTicks zero;
EXPECT_EQ("0 bogo-microseconds", AnyToString(zero));
}
TEST(TimeTicksLogging, FortyYearsLater) {
TimeTicks forty_years_later =
TimeTicks() + TimeDelta::FromDays(365.25 * 40);
EXPECT_EQ("1262304000000000 bogo-microseconds",
AnyToString(forty_years_later));
}
TEST(TimeTicksLogging, DoesNotMessUpFormattingFlags) {
std::ostringstream oss;
std::ios_base::fmtflags flags_before = oss.flags();
oss << TimeTicks();
EXPECT_EQ(flags_before, oss.flags());
}
TEST(TimeTicksLogging, DoesNotMakeStreamBad) {
std::ostringstream oss;
oss << TimeTicks();
EXPECT_TRUE(oss.good());
}
} // namespace
} // namespace base