|  | // Copyright 2012 The Chromium OS Authors. All rights reserved. | 
|  | // Use of this source code is governed by a BSD-style license that can be | 
|  | // found in the LICENSE file. | 
|  |  | 
|  | // This code implements SPAKE2, a variant of EKE: | 
|  | //  http://www.di.ens.fr/~pointche/pub.php?reference=AbPo04 | 
|  |  | 
|  | #include "third_party/chromium/crypto/p224_spake.h" | 
|  |  | 
|  | #include <algorithm> | 
|  |  | 
|  | #include <base/logging.h> | 
|  | #include <base/rand_util.h> | 
|  |  | 
|  | #include "third_party/chromium/crypto/p224.h" | 
|  |  | 
|  | namespace { | 
|  |  | 
|  | // The following two points (M and N in the protocol) are verifiable random | 
|  | // points on the curve and can be generated with the following code: | 
|  |  | 
|  | // #include <stdint.h> | 
|  | // #include <stdio.h> | 
|  | // #include <string.h> | 
|  | // | 
|  | // #include <openssl/ec.h> | 
|  | // #include <openssl/obj_mac.h> | 
|  | // #include <openssl/sha.h> | 
|  | // | 
|  | // static const char kSeed1[] = "P224 point generation seed (M)"; | 
|  | // static const char kSeed2[] = "P224 point generation seed (N)"; | 
|  | // | 
|  | // void find_seed(const char* seed) { | 
|  | //   SHA256_CTX sha256; | 
|  | //   uint8_t digest[SHA256_DIGEST_LENGTH]; | 
|  | // | 
|  | //   SHA256_Init(&sha256); | 
|  | //   SHA256_Update(&sha256, seed, strlen(seed)); | 
|  | //   SHA256_Final(digest, &sha256); | 
|  | // | 
|  | //   BIGNUM x, y; | 
|  | //   EC_GROUP* p224 = EC_GROUP_new_by_curve_name(NID_secp224r1); | 
|  | //   EC_POINT* p = EC_POINT_new(p224); | 
|  | // | 
|  | //   for (unsigned i = 0;; i++) { | 
|  | //     BN_init(&x); | 
|  | //     BN_bin2bn(digest, 28, &x); | 
|  | // | 
|  | //     if (EC_POINT_set_compressed_coordinates_GFp( | 
|  | //             p224, p, &x, digest[28] & 1, NULL)) { | 
|  | //       BN_init(&y); | 
|  | //       EC_POINT_get_affine_coordinates_GFp(p224, p, &x, &y, NULL); | 
|  | //       char* x_str = BN_bn2hex(&x); | 
|  | //       char* y_str = BN_bn2hex(&y); | 
|  | //       printf("Found after %u iterations:\n%s\n%s\n", i, x_str, y_str); | 
|  | //       OPENSSL_free(x_str); | 
|  | //       OPENSSL_free(y_str); | 
|  | //       BN_free(&x); | 
|  | //       BN_free(&y); | 
|  | //       break; | 
|  | //     } | 
|  | // | 
|  | //     SHA256_Init(&sha256); | 
|  | //     SHA256_Update(&sha256, digest, sizeof(digest)); | 
|  | //     SHA256_Final(digest, &sha256); | 
|  | // | 
|  | //     BN_free(&x); | 
|  | //   } | 
|  | // | 
|  | //   EC_POINT_free(p); | 
|  | //   EC_GROUP_free(p224); | 
|  | // } | 
|  | // | 
|  | // int main() { | 
|  | //   find_seed(kSeed1); | 
|  | //   find_seed(kSeed2); | 
|  | //   return 0; | 
|  | // } | 
|  |  | 
|  | const crypto::p224::Point kM = { | 
|  | {174237515, 77186811, 235213682, 33849492, | 
|  | 33188520, 48266885, 177021753, 81038478}, | 
|  | {104523827, 245682244, 266509668, 236196369, | 
|  | 28372046, 145351378, 198520366, 113345994}, | 
|  | {1, 0, 0, 0, 0, 0, 0, 0}, | 
|  | }; | 
|  |  | 
|  | const crypto::p224::Point kN = { | 
|  | {136176322, 263523628, 251628795, 229292285, | 
|  | 5034302, 185981975, 171998428, 11653062}, | 
|  | {197567436, 51226044, 60372156, 175772188, | 
|  | 42075930, 8083165, 160827401, 65097570}, | 
|  | {1, 0, 0, 0, 0, 0, 0, 0}, | 
|  | }; | 
|  |  | 
|  | // Performs a constant-time comparison of two strings, returning true if the | 
|  | // strings are equal. | 
|  | // | 
|  | // For cryptographic operations, comparison functions such as memcmp() may | 
|  | // expose side-channel information about input, allowing an attacker to | 
|  | // perform timing analysis to determine what the expected bits should be. In | 
|  | // order to avoid such attacks, the comparison must execute in constant time, | 
|  | // so as to not to reveal to the attacker where the difference(s) are. | 
|  | // For an example attack, see | 
|  | // http://groups.google.com/group/keyczar-discuss/browse_thread/thread/5571eca0948b2a13 | 
|  | bool SecureMemEqual(const uint8_t* s1_ptr, const uint8_t* s2_ptr, size_t n) { | 
|  | uint8_t tmp = 0; | 
|  | for (size_t i = 0; i < n; ++i, ++s1_ptr, ++s2_ptr) | 
|  | tmp |= *s1_ptr ^ *s2_ptr; | 
|  | return (tmp == 0); | 
|  | } | 
|  |  | 
|  | }  // anonymous namespace | 
|  |  | 
|  | namespace crypto { | 
|  |  | 
|  | P224EncryptedKeyExchange::P224EncryptedKeyExchange( | 
|  | PeerType peer_type, const base::StringPiece& password) | 
|  | : state_(kStateInitial), | 
|  | is_server_(peer_type == kPeerTypeServer) { | 
|  | memset(&x_, 0, sizeof(x_)); | 
|  | memset(&expected_authenticator_, 0, sizeof(expected_authenticator_)); | 
|  |  | 
|  | // x_ is a random scalar. | 
|  | base::RandBytes(x_, sizeof(x_)); | 
|  |  | 
|  | // Calculate |password| hash to get SPAKE password value. | 
|  | SHA256HashString(std::string(password.data(), password.length()), | 
|  | pw_, sizeof(pw_)); | 
|  |  | 
|  | Init(); | 
|  | } | 
|  |  | 
|  | void P224EncryptedKeyExchange::Init() { | 
|  | // X = g**x_ | 
|  | p224::Point X; | 
|  | p224::ScalarBaseMult(x_, &X); | 
|  |  | 
|  | // The client masks the Diffie-Hellman value, X, by adding M**pw and the | 
|  | // server uses N**pw. | 
|  | p224::Point MNpw; | 
|  | p224::ScalarMult(is_server_ ? kN : kM, pw_, &MNpw); | 
|  |  | 
|  | // X* = X + (N|M)**pw | 
|  | p224::Point Xstar; | 
|  | p224::Add(X, MNpw, &Xstar); | 
|  |  | 
|  | next_message_ = Xstar.ToString(); | 
|  | } | 
|  |  | 
|  | const std::string& P224EncryptedKeyExchange::GetNextMessage() { | 
|  | if (state_ == kStateInitial) { | 
|  | state_ = kStateRecvDH; | 
|  | return next_message_; | 
|  | } else if (state_ == kStateSendHash) { | 
|  | state_ = kStateRecvHash; | 
|  | return next_message_; | 
|  | } | 
|  |  | 
|  | LOG(FATAL) << "P224EncryptedKeyExchange::GetNextMessage called in" | 
|  | " bad state " << state_; | 
|  | next_message_ = ""; | 
|  | return next_message_; | 
|  | } | 
|  |  | 
|  | P224EncryptedKeyExchange::Result P224EncryptedKeyExchange::ProcessMessage( | 
|  | const base::StringPiece& message) { | 
|  | if (state_ == kStateRecvHash) { | 
|  | // This is the final state of the protocol: we are reading the peer's | 
|  | // authentication hash and checking that it matches the one that we expect. | 
|  | if (message.size() != sizeof(expected_authenticator_)) { | 
|  | error_ = "peer's hash had an incorrect size"; | 
|  | return kResultFailed; | 
|  | } | 
|  | if (!SecureMemEqual(reinterpret_cast<const uint8_t*>(message.data()), | 
|  | expected_authenticator_, message.size())) { | 
|  | error_ = "peer's hash had incorrect value"; | 
|  | return kResultFailed; | 
|  | } | 
|  | state_ = kStateDone; | 
|  | return kResultSuccess; | 
|  | } | 
|  |  | 
|  | if (state_ != kStateRecvDH) { | 
|  | LOG(FATAL) << "P224EncryptedKeyExchange::ProcessMessage called in" | 
|  | " bad state " << state_; | 
|  | error_ = "internal error"; | 
|  | return kResultFailed; | 
|  | } | 
|  |  | 
|  | // Y* is the other party's masked, Diffie-Hellman value. | 
|  | p224::Point Ystar; | 
|  | if (!Ystar.SetFromString(message)) { | 
|  | error_ = "failed to parse peer's masked Diffie-Hellman value"; | 
|  | return kResultFailed; | 
|  | } | 
|  |  | 
|  | // We calculate the mask value: (N|M)**pw | 
|  | p224::Point MNpw, minus_MNpw, Y, k; | 
|  | p224::ScalarMult(is_server_ ? kM : kN, pw_, &MNpw); | 
|  | p224::Negate(MNpw, &minus_MNpw); | 
|  |  | 
|  | // Y = Y* - (N|M)**pw | 
|  | p224::Add(Ystar, minus_MNpw, &Y); | 
|  |  | 
|  | // K = Y**x_ | 
|  | p224::ScalarMult(Y, x_, &k); | 
|  |  | 
|  | // If everything worked out, then K is the same for both parties. | 
|  | key_ = k.ToString(); | 
|  |  | 
|  | std::string client_masked_dh, server_masked_dh; | 
|  | if (is_server_) { | 
|  | client_masked_dh = message.as_string(); | 
|  | server_masked_dh = next_message_; | 
|  | } else { | 
|  | client_masked_dh = next_message_; | 
|  | server_masked_dh = message.as_string(); | 
|  | } | 
|  |  | 
|  | // Now we calculate the hashes that each side will use to prove to the other | 
|  | // that they derived the correct value for K. | 
|  | uint8_t client_hash[kSHA256Length], server_hash[kSHA256Length]; | 
|  | CalculateHash(kPeerTypeClient, client_masked_dh, server_masked_dh, key_, | 
|  | client_hash); | 
|  | CalculateHash(kPeerTypeServer, client_masked_dh, server_masked_dh, key_, | 
|  | server_hash); | 
|  |  | 
|  | const uint8_t* my_hash = is_server_ ? server_hash : client_hash; | 
|  | const uint8_t* their_hash = is_server_ ? client_hash : server_hash; | 
|  |  | 
|  | next_message_ = | 
|  | std::string(reinterpret_cast<const char*>(my_hash), kSHA256Length); | 
|  | memcpy(expected_authenticator_, their_hash, kSHA256Length); | 
|  | state_ = kStateSendHash; | 
|  | return kResultPending; | 
|  | } | 
|  |  | 
|  | void P224EncryptedKeyExchange::CalculateHash( | 
|  | PeerType peer_type, | 
|  | const std::string& client_masked_dh, | 
|  | const std::string& server_masked_dh, | 
|  | const std::string& k, | 
|  | uint8_t* out_digest) { | 
|  | std::string hash_contents; | 
|  |  | 
|  | if (peer_type == kPeerTypeServer) { | 
|  | hash_contents = "server"; | 
|  | } else { | 
|  | hash_contents = "client"; | 
|  | } | 
|  |  | 
|  | hash_contents += client_masked_dh; | 
|  | hash_contents += server_masked_dh; | 
|  | hash_contents += | 
|  | std::string(reinterpret_cast<const char *>(pw_), sizeof(pw_)); | 
|  | hash_contents += k; | 
|  |  | 
|  | SHA256HashString(hash_contents, out_digest, kSHA256Length); | 
|  | } | 
|  |  | 
|  | const std::string& P224EncryptedKeyExchange::error() const { | 
|  | return error_; | 
|  | } | 
|  |  | 
|  | const std::string& P224EncryptedKeyExchange::GetKey() const { | 
|  | DCHECK_EQ(state_, kStateDone); | 
|  | return GetUnverifiedKey(); | 
|  | } | 
|  |  | 
|  | const std::string& P224EncryptedKeyExchange::GetUnverifiedKey() const { | 
|  | // Key is already final when state is kStateSendHash. Subsequent states are | 
|  | // used only for verification of the key. Some users may combine verification | 
|  | // with sending verifiable data instead of |expected_authenticator_|. | 
|  | DCHECK_GE(state_, kStateSendHash); | 
|  | return key_; | 
|  | } | 
|  |  | 
|  | void P224EncryptedKeyExchange::SetXForTesting(const std::string& x) { | 
|  | memset(&x_, 0, sizeof(x_)); | 
|  | memcpy(&x_, x.data(), std::min(x.size(), sizeof(x_))); | 
|  | Init(); | 
|  | } | 
|  |  | 
|  | }  // namespace crypto |