| // Copyright 2015 The Weave Authors. All rights reserved. | 
 | // Use of this source code is governed by a BSD-style license that can be | 
 | // found in the LICENSE file. | 
 |  | 
 | #include "src/backoff_entry.h" | 
 |  | 
 | #include <algorithm> | 
 | #include <cmath> | 
 | #include <limits> | 
 |  | 
 | #include <base/logging.h> | 
 | #include <base/rand_util.h> | 
 |  | 
 | namespace weave { | 
 |  | 
 | BackoffEntry::BackoffEntry(const BackoffEntry::Policy* const policy) | 
 |     : policy_(policy) { | 
 |   DCHECK(policy_); | 
 |   Reset(); | 
 | } | 
 |  | 
 | void BackoffEntry::InformOfRequest(bool succeeded) { | 
 |   if (!succeeded) { | 
 |     ++failure_count_; | 
 |     exponential_backoff_release_time_ = CalculateReleaseTime(); | 
 |   } else { | 
 |     // We slowly decay the number of times delayed instead of | 
 |     // resetting it to 0 in order to stay stable if we receive | 
 |     // successes interleaved between lots of failures.  Note that in | 
 |     // the normal case, the calculated release time (in the next | 
 |     // statement) will be in the past once the method returns. | 
 |     if (failure_count_ > 0) | 
 |       --failure_count_; | 
 |  | 
 |     // The reason why we are not just cutting the release time to | 
 |     // ImplGetTimeNow() is on the one hand, it would unset a release | 
 |     // time set by SetCustomReleaseTime and on the other we would like | 
 |     // to push every request up to our "horizon" when dealing with | 
 |     // multiple in-flight requests. Ex: If we send three requests and | 
 |     // we receive 2 failures and 1 success. The success that follows | 
 |     // those failures will not reset the release time, further | 
 |     // requests will then need to wait the delay caused by the 2 | 
 |     // failures. | 
 |     base::TimeDelta delay; | 
 |     if (policy_->always_use_initial_delay) | 
 |       delay = base::TimeDelta::FromMilliseconds(policy_->initial_delay_ms); | 
 |     exponential_backoff_release_time_ = | 
 |         std::max(ImplGetTimeNow() + delay, exponential_backoff_release_time_); | 
 |   } | 
 | } | 
 |  | 
 | bool BackoffEntry::ShouldRejectRequest() const { | 
 |   return exponential_backoff_release_time_ > ImplGetTimeNow(); | 
 | } | 
 |  | 
 | base::TimeDelta BackoffEntry::GetTimeUntilRelease() const { | 
 |   base::TimeTicks now = ImplGetTimeNow(); | 
 |   if (exponential_backoff_release_time_ <= now) | 
 |     return base::TimeDelta(); | 
 |   return exponential_backoff_release_time_ - now; | 
 | } | 
 |  | 
 | base::TimeTicks BackoffEntry::GetReleaseTime() const { | 
 |   return exponential_backoff_release_time_; | 
 | } | 
 |  | 
 | void BackoffEntry::SetCustomReleaseTime(const base::TimeTicks& release_time) { | 
 |   exponential_backoff_release_time_ = release_time; | 
 | } | 
 |  | 
 | bool BackoffEntry::CanDiscard() const { | 
 |   if (policy_->entry_lifetime_ms == -1) | 
 |     return false; | 
 |  | 
 |   base::TimeTicks now = ImplGetTimeNow(); | 
 |  | 
 |   int64_t unused_since_ms = | 
 |       (now - exponential_backoff_release_time_).InMilliseconds(); | 
 |  | 
 |   // Release time is further than now, we are managing it. | 
 |   if (unused_since_ms < 0) | 
 |     return false; | 
 |  | 
 |   if (failure_count_ > 0) { | 
 |     // Need to keep track of failures until maximum back-off period | 
 |     // has passed (since further failures can add to back-off). | 
 |     return unused_since_ms >= | 
 |            std::max(policy_->maximum_backoff_ms, policy_->entry_lifetime_ms); | 
 |   } | 
 |  | 
 |   // Otherwise, consider the entry is outdated if it hasn't been used for the | 
 |   // specified lifetime period. | 
 |   return unused_since_ms >= policy_->entry_lifetime_ms; | 
 | } | 
 |  | 
 | void BackoffEntry::Reset() { | 
 |   failure_count_ = 0; | 
 |  | 
 |   // We leave exponential_backoff_release_time_ unset, meaning 0. We could | 
 |   // initialize to ImplGetTimeNow() but because it's a virtual method it's | 
 |   // not safe to call in the constructor (and the constructor calls Reset()). | 
 |   // The effects are the same, i.e. ShouldRejectRequest() will return false | 
 |   // right after Reset(). | 
 |   exponential_backoff_release_time_ = base::TimeTicks(); | 
 | } | 
 |  | 
 | base::TimeTicks BackoffEntry::ImplGetTimeNow() const { | 
 |   return base::TimeTicks::Now(); | 
 | } | 
 |  | 
 | base::TimeTicks BackoffEntry::CalculateReleaseTime() const { | 
 |   int effective_failure_count = | 
 |       std::max(0, failure_count_ - policy_->num_errors_to_ignore); | 
 |  | 
 |   // If always_use_initial_delay is true, it's equivalent to | 
 |   // the effective_failure_count always being one greater than when it's false. | 
 |   if (policy_->always_use_initial_delay) | 
 |     ++effective_failure_count; | 
 |  | 
 |   if (effective_failure_count == 0) { | 
 |     // Never reduce previously set release horizon, e.g. due to Retry-After | 
 |     // header. | 
 |     return std::max(ImplGetTimeNow(), exponential_backoff_release_time_); | 
 |   } | 
 |  | 
 |   // The delay is calculated with this formula: | 
 |   // delay = initial_backoff * multiply_factor^( | 
 |   //     effective_failure_count - 1) * Uniform(1 - jitter_factor, 1] | 
 |   // Note: if the failure count is too high, |delay_ms| will become infinity | 
 |   // after the exponential calculation, and then NaN after the jitter is | 
 |   // accounted for. Both cases are handled by using CheckedNumeric<int64_t> to | 
 |   // perform the conversion to integers. | 
 |   double delay_ms = policy_->initial_delay_ms; | 
 |   delay_ms *= pow(policy_->multiply_factor, effective_failure_count - 1); | 
 |   delay_ms -= base::RandDouble() * policy_->jitter_factor * delay_ms; | 
 |  | 
 |   // Do overflow checking in microseconds, the internal unit of TimeTicks. | 
 |   const int64_t kTimeTicksNowUs = | 
 |       (ImplGetTimeNow() - base::TimeTicks()).InMicroseconds(); | 
 |   base::internal::CheckedNumeric<int64_t> calculated_release_time_us = | 
 |       delay_ms + 0.5; | 
 |   calculated_release_time_us *= base::Time::kMicrosecondsPerMillisecond; | 
 |   calculated_release_time_us += kTimeTicksNowUs; | 
 |  | 
 |   const int64_t kMaxTime = std::numeric_limits<int64_t>::max(); | 
 |   base::internal::CheckedNumeric<int64_t> maximum_release_time_us = kMaxTime; | 
 |   if (policy_->maximum_backoff_ms >= 0) { | 
 |     maximum_release_time_us = policy_->maximum_backoff_ms; | 
 |     maximum_release_time_us *= base::Time::kMicrosecondsPerMillisecond; | 
 |     maximum_release_time_us += kTimeTicksNowUs; | 
 |   } | 
 |  | 
 |   // Decide between maximum release time and calculated release time, accounting | 
 |   // for overflow with both. | 
 |   int64_t release_time_us = | 
 |       std::min(calculated_release_time_us.ValueOrDefault(kMaxTime), | 
 |                maximum_release_time_us.ValueOrDefault(kMaxTime)); | 
 |  | 
 |   // Never reduce previously set release horizon, e.g. due to Retry-After | 
 |   // header. | 
 |   return std::max( | 
 |       base::TimeTicks() + base::TimeDelta::FromMicroseconds(release_time_us), | 
 |       exponential_backoff_release_time_); | 
 | } | 
 |  | 
 | }  // namespace weave |