|  | // Copyright (c) 2011 The Chromium Authors. All rights reserved. | 
|  | // Use of this source code is governed by a BSD-style license that can be | 
|  | // found in the LICENSE file. | 
|  |  | 
|  | #include "base/rand_util.h" | 
|  |  | 
|  | #include <stddef.h> | 
|  | #include <stdint.h> | 
|  |  | 
|  | #include <algorithm> | 
|  | #include <limits> | 
|  |  | 
|  | #include <gtest/gtest.h> | 
|  |  | 
|  | #include "base/logging.h" | 
|  | #include "base/memory/scoped_ptr.h" | 
|  | #include "base/time/time.h" | 
|  |  | 
|  | namespace { | 
|  |  | 
|  | const int kIntMin = std::numeric_limits<int>::min(); | 
|  | const int kIntMax = std::numeric_limits<int>::max(); | 
|  |  | 
|  | }  // namespace | 
|  |  | 
|  | TEST(RandUtilTest, RandInt) { | 
|  | EXPECT_EQ(base::RandInt(0, 0), 0); | 
|  | EXPECT_EQ(base::RandInt(kIntMin, kIntMin), kIntMin); | 
|  | EXPECT_EQ(base::RandInt(kIntMax, kIntMax), kIntMax); | 
|  |  | 
|  | // Check that the DCHECKS in RandInt() don't fire due to internal overflow. | 
|  | // There was a 50% chance of that happening, so calling it 40 times means | 
|  | // the chances of this passing by accident are tiny (9e-13). | 
|  | for (int i = 0; i < 40; ++i) | 
|  | base::RandInt(kIntMin, kIntMax); | 
|  | } | 
|  |  | 
|  | TEST(RandUtilTest, RandDouble) { | 
|  | // Force 64-bit precision, making sure we're not in a 80-bit FPU register. | 
|  | volatile double number = base::RandDouble(); | 
|  | EXPECT_GT(1.0, number); | 
|  | EXPECT_LE(0.0, number); | 
|  | } | 
|  |  | 
|  | TEST(RandUtilTest, RandBytes) { | 
|  | const size_t buffer_size = 50; | 
|  | char buffer[buffer_size]; | 
|  | memset(buffer, 0, buffer_size); | 
|  | base::RandBytes(buffer, buffer_size); | 
|  | std::sort(buffer, buffer + buffer_size); | 
|  | // Probability of occurrence of less than 25 unique bytes in 50 random bytes | 
|  | // is below 10^-25. | 
|  | EXPECT_GT(std::unique(buffer, buffer + buffer_size) - buffer, 25); | 
|  | } | 
|  |  | 
|  | TEST(RandUtilTest, RandBytesAsString) { | 
|  | std::string random_string = base::RandBytesAsString(1); | 
|  | EXPECT_EQ(1U, random_string.size()); | 
|  | random_string = base::RandBytesAsString(145); | 
|  | EXPECT_EQ(145U, random_string.size()); | 
|  | char accumulator = 0; | 
|  | for (size_t i = 0; i < random_string.size(); ++i) | 
|  | accumulator |= random_string[i]; | 
|  | // In theory this test can fail, but it won't before the universe dies of | 
|  | // heat death. | 
|  | EXPECT_NE(0, accumulator); | 
|  | } | 
|  |  | 
|  | // Make sure that it is still appropriate to use RandGenerator in conjunction | 
|  | // with std::random_shuffle(). | 
|  | TEST(RandUtilTest, RandGeneratorForRandomShuffle) { | 
|  | EXPECT_EQ(base::RandGenerator(1), 0U); | 
|  | EXPECT_LE(std::numeric_limits<ptrdiff_t>::max(), | 
|  | std::numeric_limits<int64_t>::max()); | 
|  | } | 
|  |  | 
|  | TEST(RandUtilTest, RandGeneratorIsUniform) { | 
|  | // Verify that RandGenerator has a uniform distribution. This is a | 
|  | // regression test that consistently failed when RandGenerator was | 
|  | // implemented this way: | 
|  | // | 
|  | //   return base::RandUint64() % max; | 
|  | // | 
|  | // A degenerate case for such an implementation is e.g. a top of | 
|  | // range that is 2/3rds of the way to MAX_UINT64, in which case the | 
|  | // bottom half of the range would be twice as likely to occur as the | 
|  | // top half. A bit of calculus care of jar@ shows that the largest | 
|  | // measurable delta is when the top of the range is 3/4ths of the | 
|  | // way, so that's what we use in the test. | 
|  | const uint64_t kTopOfRange = | 
|  | (std::numeric_limits<uint64_t>::max() / 4ULL) * 3ULL; | 
|  | const uint64_t kExpectedAverage = kTopOfRange / 2ULL; | 
|  | const uint64_t kAllowedVariance = kExpectedAverage / 50ULL;  // +/- 2% | 
|  | const int kMinAttempts = 1000; | 
|  | const int kMaxAttempts = 1000000; | 
|  |  | 
|  | double cumulative_average = 0.0; | 
|  | int count = 0; | 
|  | while (count < kMaxAttempts) { | 
|  | uint64_t value = base::RandGenerator(kTopOfRange); | 
|  | cumulative_average = (count * cumulative_average + value) / (count + 1); | 
|  |  | 
|  | // Don't quit too quickly for things to start converging, or we may have | 
|  | // a false positive. | 
|  | if (count > kMinAttempts && | 
|  | kExpectedAverage - kAllowedVariance < cumulative_average && | 
|  | cumulative_average < kExpectedAverage + kAllowedVariance) { | 
|  | break; | 
|  | } | 
|  |  | 
|  | ++count; | 
|  | } | 
|  |  | 
|  | ASSERT_LT(count, kMaxAttempts) << "Expected average was " << | 
|  | kExpectedAverage << ", average ended at " << cumulative_average; | 
|  | } | 
|  |  | 
|  | TEST(RandUtilTest, RandUint64ProducesBothValuesOfAllBits) { | 
|  | // This tests to see that our underlying random generator is good | 
|  | // enough, for some value of good enough. | 
|  | uint64_t kAllZeros = 0ULL; | 
|  | uint64_t kAllOnes = ~kAllZeros; | 
|  | uint64_t found_ones = kAllZeros; | 
|  | uint64_t found_zeros = kAllOnes; | 
|  |  | 
|  | for (size_t i = 0; i < 1000; ++i) { | 
|  | uint64_t value = base::RandUint64(); | 
|  | found_ones |= value; | 
|  | found_zeros &= value; | 
|  |  | 
|  | if (found_zeros == kAllZeros && found_ones == kAllOnes) | 
|  | return; | 
|  | } | 
|  |  | 
|  | FAIL() << "Didn't achieve all bit values in maximum number of tries."; | 
|  | } |