| // Copyright (c) 2011 The Chromium Authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style license that can be |
| // found in the LICENSE file. |
| |
| // This defines a set of argument wrappers and related factory methods that |
| // can be used specify the refcounting and reference semantics of arguments |
| // that are bound by the Bind() function in base/bind.h. |
| // |
| // It also defines a set of simple functions and utilities that people want |
| // when using Callback<> and Bind(). |
| // |
| // |
| // ARGUMENT BINDING WRAPPERS |
| // |
| // The wrapper functions are base::Unretained(), base::Owned(), base::Passed(), |
| // base::ConstRef(), and base::IgnoreResult(). |
| // |
| // Unretained() allows Bind() to bind a non-refcounted class, and to disable |
| // refcounting on arguments that are refcounted objects. |
| // |
| // Owned() transfers ownership of an object to the Callback resulting from |
| // bind; the object will be deleted when the Callback is deleted. |
| // |
| // Passed() is for transferring movable-but-not-copyable types (eg. scoped_ptr) |
| // through a Callback. Logically, this signifies a destructive transfer of |
| // the state of the argument into the target function. Invoking |
| // Callback::Run() twice on a Callback that was created with a Passed() |
| // argument will CHECK() because the first invocation would have already |
| // transferred ownership to the target function. |
| // |
| // RetainedRef() accepts a ref counted object and retains a reference to it. |
| // When the callback is called, the object is passed as a raw pointer. |
| // |
| // ConstRef() allows binding a constant reference to an argument rather |
| // than a copy. |
| // |
| // IgnoreResult() is used to adapt a function or Callback with a return type to |
| // one with a void return. This is most useful if you have a function with, |
| // say, a pesky ignorable bool return that you want to use with PostTask or |
| // something else that expect a Callback with a void return. |
| // |
| // EXAMPLE OF Unretained(): |
| // |
| // class Foo { |
| // public: |
| // void func() { cout << "Foo:f" << endl; } |
| // }; |
| // |
| // // In some function somewhere. |
| // Foo foo; |
| // Closure foo_callback = |
| // Bind(&Foo::func, Unretained(&foo)); |
| // foo_callback.Run(); // Prints "Foo:f". |
| // |
| // Without the Unretained() wrapper on |&foo|, the above call would fail |
| // to compile because Foo does not support the AddRef() and Release() methods. |
| // |
| // |
| // EXAMPLE OF Owned(): |
| // |
| // void foo(int* arg) { cout << *arg << endl } |
| // |
| // int* pn = new int(1); |
| // Closure foo_callback = Bind(&foo, Owned(pn)); |
| // |
| // foo_callback.Run(); // Prints "1" |
| // foo_callback.Run(); // Prints "1" |
| // *n = 2; |
| // foo_callback.Run(); // Prints "2" |
| // |
| // foo_callback.Reset(); // |pn| is deleted. Also will happen when |
| // // |foo_callback| goes out of scope. |
| // |
| // Without Owned(), someone would have to know to delete |pn| when the last |
| // reference to the Callback is deleted. |
| // |
| // EXAMPLE OF RetainedRef(): |
| // |
| // void foo(RefCountedBytes* bytes) {} |
| // |
| // scoped_refptr<RefCountedBytes> bytes = ...; |
| // Closure callback = Bind(&foo, base::RetainedRef(bytes)); |
| // callback.Run(); |
| // |
| // Without RetainedRef, the scoped_refptr would try to implicitly convert to |
| // a raw pointer and fail compilation: |
| // |
| // Closure callback = Bind(&foo, bytes); // ERROR! |
| // |
| // |
| // EXAMPLE OF ConstRef(): |
| // |
| // void foo(int arg) { cout << arg << endl } |
| // |
| // int n = 1; |
| // Closure no_ref = Bind(&foo, n); |
| // Closure has_ref = Bind(&foo, ConstRef(n)); |
| // |
| // no_ref.Run(); // Prints "1" |
| // has_ref.Run(); // Prints "1" |
| // |
| // n = 2; |
| // no_ref.Run(); // Prints "1" |
| // has_ref.Run(); // Prints "2" |
| // |
| // Note that because ConstRef() takes a reference on |n|, |n| must outlive all |
| // its bound callbacks. |
| // |
| // |
| // EXAMPLE OF IgnoreResult(): |
| // |
| // int DoSomething(int arg) { cout << arg << endl; } |
| // |
| // // Assign to a Callback with a void return type. |
| // Callback<void(int)> cb = Bind(IgnoreResult(&DoSomething)); |
| // cb->Run(1); // Prints "1". |
| // |
| // // Prints "1" on |ml|. |
| // ml->PostTask(FROM_HERE, Bind(IgnoreResult(&DoSomething), 1); |
| // |
| // |
| // EXAMPLE OF Passed(): |
| // |
| // void TakesOwnership(std::unique_ptr<Foo> arg) { } |
| // std::unique_ptr<Foo> CreateFoo() { return std::unique_ptr<Foo>(new Foo()); |
| // } |
| // |
| // std::unique_ptr<Foo> f(new Foo()); |
| // |
| // // |cb| is given ownership of Foo(). |f| is now NULL. |
| // // You can use std::move(f) in place of &f, but it's more verbose. |
| // Closure cb = Bind(&TakesOwnership, Passed(&f)); |
| // |
| // // Run was never called so |cb| still owns Foo() and deletes |
| // // it on Reset(). |
| // cb.Reset(); |
| // |
| // // |cb| is given a new Foo created by CreateFoo(). |
| // cb = Bind(&TakesOwnership, Passed(CreateFoo())); |
| // |
| // // |arg| in TakesOwnership() is given ownership of Foo(). |cb| |
| // // no longer owns Foo() and, if reset, would not delete Foo(). |
| // cb.Run(); // Foo() is now transferred to |arg| and deleted. |
| // cb.Run(); // This CHECK()s since Foo() already been used once. |
| // |
| // Passed() is particularly useful with PostTask() when you are transferring |
| // ownership of an argument into a task, but don't necessarily know if the |
| // task will always be executed. This can happen if the task is cancellable |
| // or if it is posted to a TaskRunner. |
| // |
| // |
| // SIMPLE FUNCTIONS AND UTILITIES. |
| // |
| // DoNothing() - Useful for creating a Closure that does nothing when called. |
| // DeletePointer<T>() - Useful for creating a Closure that will delete a |
| // pointer when invoked. Only use this when necessary. |
| // In most cases MessageLoop::DeleteSoon() is a better |
| // fit. |
| |
| #ifndef BASE_BIND_HELPERS_H_ |
| #define BASE_BIND_HELPERS_H_ |
| |
| #include <stddef.h> |
| |
| #include <type_traits> |
| #include <utility> |
| |
| #include "base/callback.h" |
| #include "base/memory/weak_ptr.h" |
| #include "build/build_config.h" |
| |
| namespace base { |
| |
| template <typename T> |
| struct IsWeakReceiver; |
| |
| namespace internal { |
| |
| template <typename T> |
| class UnretainedWrapper { |
| public: |
| explicit UnretainedWrapper(T* o) : ptr_(o) {} |
| T* get() const { return ptr_; } |
| private: |
| T* ptr_; |
| }; |
| |
| template <typename T> |
| class ConstRefWrapper { |
| public: |
| explicit ConstRefWrapper(const T& o) : ptr_(&o) {} |
| const T& get() const { return *ptr_; } |
| private: |
| const T* ptr_; |
| }; |
| |
| template <typename T> |
| class RetainedRefWrapper { |
| public: |
| explicit RetainedRefWrapper(T* o) : ptr_(o) {} |
| explicit RetainedRefWrapper(scoped_refptr<T> o) : ptr_(std::move(o)) {} |
| T* get() const { return ptr_.get(); } |
| private: |
| scoped_refptr<T> ptr_; |
| }; |
| |
| template <typename T> |
| struct IgnoreResultHelper { |
| explicit IgnoreResultHelper(T functor) : functor_(std::move(functor)) {} |
| explicit operator bool() const { return !!functor_; } |
| |
| T functor_; |
| }; |
| |
| // An alternate implementation is to avoid the destructive copy, and instead |
| // specialize ParamTraits<> for OwnedWrapper<> to change the StorageType to |
| // a class that is essentially a std::unique_ptr<>. |
| // |
| // The current implementation has the benefit though of leaving ParamTraits<> |
| // fully in callback_internal.h as well as avoiding type conversions during |
| // storage. |
| template <typename T> |
| class OwnedWrapper { |
| public: |
| explicit OwnedWrapper(T* o) : ptr_(o) {} |
| ~OwnedWrapper() { delete ptr_; } |
| T* get() const { return ptr_; } |
| OwnedWrapper(OwnedWrapper&& other) { |
| ptr_ = other.ptr_; |
| other.ptr_ = NULL; |
| } |
| |
| private: |
| mutable T* ptr_; |
| }; |
| |
| // PassedWrapper is a copyable adapter for a scoper that ignores const. |
| // |
| // It is needed to get around the fact that Bind() takes a const reference to |
| // all its arguments. Because Bind() takes a const reference to avoid |
| // unnecessary copies, it is incompatible with movable-but-not-copyable |
| // types; doing a destructive "move" of the type into Bind() would violate |
| // the const correctness. |
| // |
| // This conundrum cannot be solved without either C++11 rvalue references or |
| // a O(2^n) blowup of Bind() templates to handle each combination of regular |
| // types and movable-but-not-copyable types. Thus we introduce a wrapper type |
| // that is copyable to transmit the correct type information down into |
| // BindState<>. Ignoring const in this type makes sense because it is only |
| // created when we are explicitly trying to do a destructive move. |
| // |
| // Two notes: |
| // 1) PassedWrapper supports any type that has a move constructor, however |
| // the type will need to be specifically whitelisted in order for it to be |
| // bound to a Callback. We guard this explicitly at the call of Passed() |
| // to make for clear errors. Things not given to Passed() will be forwarded |
| // and stored by value which will not work for general move-only types. |
| // 2) is_valid_ is distinct from NULL because it is valid to bind a "NULL" |
| // scoper to a Callback and allow the Callback to execute once. |
| template <typename T> |
| class PassedWrapper { |
| public: |
| explicit PassedWrapper(T&& scoper) |
| : is_valid_(true), scoper_(std::move(scoper)) {} |
| PassedWrapper(PassedWrapper&& other) |
| : is_valid_(other.is_valid_), scoper_(std::move(other.scoper_)) {} |
| T Take() const { |
| CHECK(is_valid_); |
| is_valid_ = false; |
| return std::move(scoper_); |
| } |
| |
| private: |
| mutable bool is_valid_; |
| mutable T scoper_; |
| }; |
| |
| // Unwrap the stored parameters for the wrappers above. |
| template <typename T> |
| T&& Unwrap(T&& o) { |
| return std::forward<T>(o); |
| } |
| |
| template <typename T> |
| T* Unwrap(const UnretainedWrapper<T>& unretained) { |
| return unretained.get(); |
| } |
| |
| template <typename T> |
| const T& Unwrap(const ConstRefWrapper<T>& const_ref) { |
| return const_ref.get(); |
| } |
| |
| template <typename T> |
| T* Unwrap(const RetainedRefWrapper<T>& o) { |
| return o.get(); |
| } |
| |
| template <typename T> |
| T* Unwrap(const OwnedWrapper<T>& o) { |
| return o.get(); |
| } |
| |
| template <typename T> |
| T Unwrap(const PassedWrapper<T>& o) { |
| return o.Take(); |
| } |
| |
| // IsWeakMethod is a helper that determine if we are binding a WeakPtr<> to a |
| // method. It is used internally by Bind() to select the correct |
| // InvokeHelper that will no-op itself in the event the WeakPtr<> for |
| // the target object is invalidated. |
| // |
| // The first argument should be the type of the object that will be received by |
| // the method. |
| template <bool is_method, typename... Args> |
| struct IsWeakMethod : std::false_type {}; |
| |
| template <typename T, typename... Args> |
| struct IsWeakMethod<true, T, Args...> : IsWeakReceiver<T> {}; |
| |
| // Packs a list of types to hold them in a single type. |
| template <typename... Types> |
| struct TypeList {}; |
| |
| // Used for DropTypeListItem implementation. |
| template <size_t n, typename List> |
| struct DropTypeListItemImpl; |
| |
| // Do not use enable_if and SFINAE here to avoid MSVC2013 compile failure. |
| template <size_t n, typename T, typename... List> |
| struct DropTypeListItemImpl<n, TypeList<T, List...>> |
| : DropTypeListItemImpl<n - 1, TypeList<List...>> {}; |
| |
| template <typename T, typename... List> |
| struct DropTypeListItemImpl<0, TypeList<T, List...>> { |
| using Type = TypeList<T, List...>; |
| }; |
| |
| template <> |
| struct DropTypeListItemImpl<0, TypeList<>> { |
| using Type = TypeList<>; |
| }; |
| |
| // A type-level function that drops |n| list item from given TypeList. |
| template <size_t n, typename List> |
| using DropTypeListItem = typename DropTypeListItemImpl<n, List>::Type; |
| |
| // Used for TakeTypeListItem implementation. |
| template <size_t n, typename List, typename... Accum> |
| struct TakeTypeListItemImpl; |
| |
| // Do not use enable_if and SFINAE here to avoid MSVC2013 compile failure. |
| template <size_t n, typename T, typename... List, typename... Accum> |
| struct TakeTypeListItemImpl<n, TypeList<T, List...>, Accum...> |
| : TakeTypeListItemImpl<n - 1, TypeList<List...>, Accum..., T> {}; |
| |
| template <typename T, typename... List, typename... Accum> |
| struct TakeTypeListItemImpl<0, TypeList<T, List...>, Accum...> { |
| using Type = TypeList<Accum...>; |
| }; |
| |
| template <typename... Accum> |
| struct TakeTypeListItemImpl<0, TypeList<>, Accum...> { |
| using Type = TypeList<Accum...>; |
| }; |
| |
| // A type-level function that takes first |n| list item from given TypeList. |
| // E.g. TakeTypeListItem<3, TypeList<A, B, C, D>> is evaluated to |
| // TypeList<A, B, C>. |
| template <size_t n, typename List> |
| using TakeTypeListItem = typename TakeTypeListItemImpl<n, List>::Type; |
| |
| // Used for ConcatTypeLists implementation. |
| template <typename List1, typename List2> |
| struct ConcatTypeListsImpl; |
| |
| template <typename... Types1, typename... Types2> |
| struct ConcatTypeListsImpl<TypeList<Types1...>, TypeList<Types2...>> { |
| using Type = TypeList<Types1..., Types2...>; |
| }; |
| |
| // A type-level function that concats two TypeLists. |
| template <typename List1, typename List2> |
| using ConcatTypeLists = typename ConcatTypeListsImpl<List1, List2>::Type; |
| |
| // Used for MakeFunctionType implementation. |
| template <typename R, typename ArgList> |
| struct MakeFunctionTypeImpl; |
| |
| template <typename R, typename... Args> |
| struct MakeFunctionTypeImpl<R, TypeList<Args...>> { |
| // MSVC 2013 doesn't support Type Alias of function types. |
| // Revisit this after we update it to newer version. |
| typedef R Type(Args...); |
| }; |
| |
| // A type-level function that constructs a function type that has |R| as its |
| // return type and has TypeLists items as its arguments. |
| template <typename R, typename ArgList> |
| using MakeFunctionType = typename MakeFunctionTypeImpl<R, ArgList>::Type; |
| |
| // Used for ExtractArgs and ExtractReturnType. |
| template <typename Signature> |
| struct ExtractArgsImpl; |
| |
| template <typename R, typename... Args> |
| struct ExtractArgsImpl<R(Args...)> { |
| using ReturnType = R; |
| using ArgsList = TypeList<Args...>; |
| }; |
| |
| // A type-level function that extracts function arguments into a TypeList. |
| // E.g. ExtractArgs<R(A, B, C)> is evaluated to TypeList<A, B, C>. |
| template <typename Signature> |
| using ExtractArgs = typename ExtractArgsImpl<Signature>::ArgsList; |
| |
| // A type-level function that extracts the return type of a function. |
| // E.g. ExtractReturnType<R(A, B, C)> is evaluated to R. |
| template <typename Signature> |
| using ExtractReturnType = typename ExtractArgsImpl<Signature>::ReturnType; |
| |
| } // namespace internal |
| |
| template <typename T> |
| static inline internal::UnretainedWrapper<T> Unretained(T* o) { |
| return internal::UnretainedWrapper<T>(o); |
| } |
| |
| template <typename T> |
| static inline internal::RetainedRefWrapper<T> RetainedRef(T* o) { |
| return internal::RetainedRefWrapper<T>(o); |
| } |
| |
| template <typename T> |
| static inline internal::RetainedRefWrapper<T> RetainedRef(scoped_refptr<T> o) { |
| return internal::RetainedRefWrapper<T>(std::move(o)); |
| } |
| |
| template <typename T> |
| static inline internal::ConstRefWrapper<T> ConstRef(const T& o) { |
| return internal::ConstRefWrapper<T>(o); |
| } |
| |
| template <typename T> |
| static inline internal::OwnedWrapper<T> Owned(T* o) { |
| return internal::OwnedWrapper<T>(o); |
| } |
| |
| // We offer 2 syntaxes for calling Passed(). The first takes an rvalue and |
| // is best suited for use with the return value of a function or other temporary |
| // rvalues. The second takes a pointer to the scoper and is just syntactic sugar |
| // to avoid having to write Passed(std::move(scoper)). |
| // |
| // Both versions of Passed() prevent T from being an lvalue reference. The first |
| // via use of enable_if, and the second takes a T* which will not bind to T&. |
| template <typename T, |
| typename std::enable_if<!std::is_lvalue_reference<T>::value>::type* = |
| nullptr> |
| static inline internal::PassedWrapper<T> Passed(T&& scoper) { |
| return internal::PassedWrapper<T>(std::move(scoper)); |
| } |
| template <typename T> |
| static inline internal::PassedWrapper<T> Passed(T* scoper) { |
| return internal::PassedWrapper<T>(std::move(*scoper)); |
| } |
| |
| template <typename T> |
| static inline internal::IgnoreResultHelper<T> IgnoreResult(T data) { |
| return internal::IgnoreResultHelper<T>(std::move(data)); |
| } |
| |
| BASE_EXPORT void DoNothing(); |
| |
| template<typename T> |
| void DeletePointer(T* obj) { |
| delete obj; |
| } |
| |
| // An injection point to control |this| pointer behavior on a method invocation. |
| // If IsWeakReceiver<> is true_type for |T| and |T| is used for a receiver of a |
| // method, base::Bind cancels the method invocation if the receiver is tested as |
| // false. |
| // E.g. Foo::bar() is not called: |
| // struct Foo : base::SupportsWeakPtr<Foo> { |
| // void bar() {} |
| // }; |
| // |
| // WeakPtr<Foo> oo = nullptr; |
| // base::Bind(&Foo::bar, oo).Run(); |
| template <typename T> |
| struct IsWeakReceiver : std::false_type {}; |
| |
| template <typename T> |
| struct IsWeakReceiver<internal::ConstRefWrapper<T>> : IsWeakReceiver<T> {}; |
| |
| template <typename T> |
| struct IsWeakReceiver<WeakPtr<T>> : std::true_type {}; |
| |
| } // namespace base |
| |
| #endif // BASE_BIND_HELPERS_H_ |