|  | // Copyright 2015 The Weave Authors. All rights reserved. | 
|  | // Use of this source code is governed by a BSD-style license that can be | 
|  | // found in the LICENSE file. | 
|  |  | 
|  | #include "src/backoff_entry.h" | 
|  |  | 
|  | #include <algorithm> | 
|  | #include <cmath> | 
|  | #include <limits> | 
|  |  | 
|  | #include <base/logging.h> | 
|  | #include <base/rand_util.h> | 
|  |  | 
|  | namespace weave { | 
|  |  | 
|  | BackoffEntry::BackoffEntry(const BackoffEntry::Policy* const policy) | 
|  | : policy_(policy) { | 
|  | DCHECK(policy_); | 
|  | Reset(); | 
|  | } | 
|  |  | 
|  | void BackoffEntry::InformOfRequest(bool succeeded) { | 
|  | if (!succeeded) { | 
|  | ++failure_count_; | 
|  | exponential_backoff_release_time_ = CalculateReleaseTime(); | 
|  | } else { | 
|  | // We slowly decay the number of times delayed instead of | 
|  | // resetting it to 0 in order to stay stable if we receive | 
|  | // successes interleaved between lots of failures.  Note that in | 
|  | // the normal case, the calculated release time (in the next | 
|  | // statement) will be in the past once the method returns. | 
|  | if (failure_count_ > 0) | 
|  | --failure_count_; | 
|  |  | 
|  | // The reason why we are not just cutting the release time to | 
|  | // ImplGetTimeNow() is on the one hand, it would unset a release | 
|  | // time set by SetCustomReleaseTime and on the other we would like | 
|  | // to push every request up to our "horizon" when dealing with | 
|  | // multiple in-flight requests. Ex: If we send three requests and | 
|  | // we receive 2 failures and 1 success. The success that follows | 
|  | // those failures will not reset the release time, further | 
|  | // requests will then need to wait the delay caused by the 2 | 
|  | // failures. | 
|  | base::TimeDelta delay; | 
|  | if (policy_->always_use_initial_delay) | 
|  | delay = base::TimeDelta::FromMilliseconds(policy_->initial_delay_ms); | 
|  | exponential_backoff_release_time_ = | 
|  | std::max(ImplGetTimeNow() + delay, exponential_backoff_release_time_); | 
|  | } | 
|  | } | 
|  |  | 
|  | bool BackoffEntry::ShouldRejectRequest() const { | 
|  | return exponential_backoff_release_time_ > ImplGetTimeNow(); | 
|  | } | 
|  |  | 
|  | base::TimeDelta BackoffEntry::GetTimeUntilRelease() const { | 
|  | base::TimeTicks now = ImplGetTimeNow(); | 
|  | if (exponential_backoff_release_time_ <= now) | 
|  | return base::TimeDelta(); | 
|  | return exponential_backoff_release_time_ - now; | 
|  | } | 
|  |  | 
|  | base::TimeTicks BackoffEntry::GetReleaseTime() const { | 
|  | return exponential_backoff_release_time_; | 
|  | } | 
|  |  | 
|  | void BackoffEntry::SetCustomReleaseTime(const base::TimeTicks& release_time) { | 
|  | exponential_backoff_release_time_ = release_time; | 
|  | } | 
|  |  | 
|  | bool BackoffEntry::CanDiscard() const { | 
|  | if (policy_->entry_lifetime_ms == -1) | 
|  | return false; | 
|  |  | 
|  | base::TimeTicks now = ImplGetTimeNow(); | 
|  |  | 
|  | int64_t unused_since_ms = | 
|  | (now - exponential_backoff_release_time_).InMilliseconds(); | 
|  |  | 
|  | // Release time is further than now, we are managing it. | 
|  | if (unused_since_ms < 0) | 
|  | return false; | 
|  |  | 
|  | if (failure_count_ > 0) { | 
|  | // Need to keep track of failures until maximum back-off period | 
|  | // has passed (since further failures can add to back-off). | 
|  | return unused_since_ms >= | 
|  | std::max(policy_->maximum_backoff_ms, policy_->entry_lifetime_ms); | 
|  | } | 
|  |  | 
|  | // Otherwise, consider the entry is outdated if it hasn't been used for the | 
|  | // specified lifetime period. | 
|  | return unused_since_ms >= policy_->entry_lifetime_ms; | 
|  | } | 
|  |  | 
|  | void BackoffEntry::Reset() { | 
|  | failure_count_ = 0; | 
|  |  | 
|  | // We leave exponential_backoff_release_time_ unset, meaning 0. We could | 
|  | // initialize to ImplGetTimeNow() but because it's a virtual method it's | 
|  | // not safe to call in the constructor (and the constructor calls Reset()). | 
|  | // The effects are the same, i.e. ShouldRejectRequest() will return false | 
|  | // right after Reset(). | 
|  | exponential_backoff_release_time_ = base::TimeTicks(); | 
|  | } | 
|  |  | 
|  | base::TimeTicks BackoffEntry::ImplGetTimeNow() const { | 
|  | return base::TimeTicks::Now(); | 
|  | } | 
|  |  | 
|  | base::TimeTicks BackoffEntry::CalculateReleaseTime() const { | 
|  | int effective_failure_count = | 
|  | std::max(0, failure_count_ - policy_->num_errors_to_ignore); | 
|  |  | 
|  | // If always_use_initial_delay is true, it's equivalent to | 
|  | // the effective_failure_count always being one greater than when it's false. | 
|  | if (policy_->always_use_initial_delay) | 
|  | ++effective_failure_count; | 
|  |  | 
|  | if (effective_failure_count == 0) { | 
|  | // Never reduce previously set release horizon, e.g. due to Retry-After | 
|  | // header. | 
|  | return std::max(ImplGetTimeNow(), exponential_backoff_release_time_); | 
|  | } | 
|  |  | 
|  | // The delay is calculated with this formula: | 
|  | // delay = initial_backoff * multiply_factor^( | 
|  | //     effective_failure_count - 1) * Uniform(1 - jitter_factor, 1] | 
|  | // Note: if the failure count is too high, |delay_ms| will become infinity | 
|  | // after the exponential calculation, and then NaN after the jitter is | 
|  | // accounted for. Both cases are handled by using CheckedNumeric<int64_t> to | 
|  | // perform the conversion to integers. | 
|  | double delay_ms = policy_->initial_delay_ms; | 
|  | delay_ms *= pow(policy_->multiply_factor, effective_failure_count - 1); | 
|  | delay_ms -= base::RandDouble() * policy_->jitter_factor * delay_ms; | 
|  |  | 
|  | // Do overflow checking in microseconds, the internal unit of TimeTicks. | 
|  | const int64_t kTimeTicksNowUs = | 
|  | (ImplGetTimeNow() - base::TimeTicks()).InMicroseconds(); | 
|  | base::internal::CheckedNumeric<int64_t> calculated_release_time_us = | 
|  | delay_ms + 0.5; | 
|  | calculated_release_time_us *= base::Time::kMicrosecondsPerMillisecond; | 
|  | calculated_release_time_us += kTimeTicksNowUs; | 
|  |  | 
|  | const int64_t kMaxTime = std::numeric_limits<int64_t>::max(); | 
|  | base::internal::CheckedNumeric<int64_t> maximum_release_time_us = kMaxTime; | 
|  | if (policy_->maximum_backoff_ms >= 0) { | 
|  | maximum_release_time_us = policy_->maximum_backoff_ms; | 
|  | maximum_release_time_us *= base::Time::kMicrosecondsPerMillisecond; | 
|  | maximum_release_time_us += kTimeTicksNowUs; | 
|  | } | 
|  |  | 
|  | // Decide between maximum release time and calculated release time, accounting | 
|  | // for overflow with both. | 
|  | int64_t release_time_us = | 
|  | std::min(calculated_release_time_us.ValueOrDefault(kMaxTime), | 
|  | maximum_release_time_us.ValueOrDefault(kMaxTime)); | 
|  |  | 
|  | // Never reduce previously set release horizon, e.g. due to Retry-After | 
|  | // header. | 
|  | return std::max( | 
|  | base::TimeTicks() + base::TimeDelta::FromMicroseconds(release_time_us), | 
|  | exponential_backoff_release_time_); | 
|  | } | 
|  |  | 
|  | }  // namespace weave |