| // Copyright (c) 2012 The Chromium Authors. All rights reserved. | 
 | // Use of this source code is governed by a BSD-style license that can be | 
 | // found in the LICENSE file. | 
 |  | 
 | #include "base/time/time.h" | 
 |  | 
 | #include <stdint.h> | 
 | #include <sys/time.h> | 
 | #include <time.h> | 
 | #if defined(OS_ANDROID) && !defined(__LP64__) | 
 | #include <time64.h> | 
 | #endif | 
 | #include <unistd.h> | 
 |  | 
 | #include <limits> | 
 | #include <ostream> | 
 |  | 
 | #include "base/basictypes.h" | 
 | #include "base/logging.h" | 
 | #include "build/build_config.h" | 
 |  | 
 | namespace { | 
 |  | 
 | #if !defined(OS_MACOSX) | 
 | // Define a system-specific SysTime that wraps either to a time_t or | 
 | // a time64_t depending on the host system, and associated convertion. | 
 | // See crbug.com/162007 | 
 | #if defined(OS_ANDROID) && !defined(__LP64__) | 
 | typedef time64_t SysTime; | 
 |  | 
 | SysTime SysTimeFromTimeStruct(struct tm* timestruct, bool is_local) { | 
 |   if (is_local) | 
 |     return mktime64(timestruct); | 
 |   else | 
 |     return timegm64(timestruct); | 
 | } | 
 |  | 
 | void SysTimeToTimeStruct(SysTime t, struct tm* timestruct, bool is_local) { | 
 |   if (is_local) | 
 |     localtime64_r(&t, timestruct); | 
 |   else | 
 |     gmtime64_r(&t, timestruct); | 
 | } | 
 |  | 
 | #else  // OS_ANDROID && !__LP64__ | 
 | typedef time_t SysTime; | 
 |  | 
 | SysTime SysTimeFromTimeStruct(struct tm* timestruct, bool is_local) { | 
 |   if (is_local) | 
 |     return mktime(timestruct); | 
 |   else | 
 |     return timegm(timestruct); | 
 | } | 
 |  | 
 | void SysTimeToTimeStruct(SysTime t, struct tm* timestruct, bool is_local) { | 
 |   if (is_local) | 
 |     localtime_r(&t, timestruct); | 
 |   else | 
 |     gmtime_r(&t, timestruct); | 
 | } | 
 | #endif  // OS_ANDROID | 
 |  | 
 | int64 ConvertTimespecToMicros(const struct timespec& ts) { | 
 |   base::CheckedNumeric<int64> result(ts.tv_sec); | 
 |   result *= base::Time::kMicrosecondsPerSecond; | 
 |   result += (ts.tv_nsec / base::Time::kNanosecondsPerMicrosecond); | 
 |   return result.ValueOrDie(); | 
 | } | 
 |  | 
 | // Helper function to get results from clock_gettime() and convert to a | 
 | // microsecond timebase. Minimum requirement is MONOTONIC_CLOCK to be supported | 
 | // on the system. FreeBSD 6 has CLOCK_MONOTONIC but defines | 
 | // _POSIX_MONOTONIC_CLOCK to -1. | 
 | #if (defined(OS_POSIX) &&                                               \ | 
 |      defined(_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0) || \ | 
 |     defined(OS_BSD) || defined(OS_ANDROID) | 
 | int64 ClockNow(clockid_t clk_id) { | 
 |   struct timespec ts; | 
 |   if (clock_gettime(clk_id, &ts) != 0) { | 
 |     NOTREACHED() << "clock_gettime(" << clk_id << ") failed."; | 
 |     return 0; | 
 |   } | 
 |   return ConvertTimespecToMicros(ts); | 
 | } | 
 | #else  // _POSIX_MONOTONIC_CLOCK | 
 | #error No usable tick clock function on this platform. | 
 | #endif  // _POSIX_MONOTONIC_CLOCK | 
 | #endif  // !defined(OS_MACOSX) | 
 |  | 
 | }  // namespace | 
 |  | 
 | namespace base { | 
 |  | 
 | struct timespec TimeDelta::ToTimeSpec() const { | 
 |   int64 microseconds = InMicroseconds(); | 
 |   time_t seconds = 0; | 
 |   if (microseconds >= Time::kMicrosecondsPerSecond) { | 
 |     seconds = InSeconds(); | 
 |     microseconds -= seconds * Time::kMicrosecondsPerSecond; | 
 |   } | 
 |   struct timespec result = | 
 |       {seconds, | 
 |        static_cast<long>(microseconds * Time::kNanosecondsPerMicrosecond)}; | 
 |   return result; | 
 | } | 
 |  | 
 | #if !defined(OS_MACOSX) | 
 | // The Time routines in this file use standard POSIX routines, or almost- | 
 | // standard routines in the case of timegm.  We need to use a Mach-specific | 
 | // function for TimeTicks::Now() on Mac OS X. | 
 |  | 
 | // Time ----------------------------------------------------------------------- | 
 |  | 
 | // Windows uses a Gregorian epoch of 1601.  We need to match this internally | 
 | // so that our time representations match across all platforms.  See bug 14734. | 
 | //   irb(main):010:0> Time.at(0).getutc() | 
 | //   => Thu Jan 01 00:00:00 UTC 1970 | 
 | //   irb(main):011:0> Time.at(-11644473600).getutc() | 
 | //   => Mon Jan 01 00:00:00 UTC 1601 | 
 | static const int64 kWindowsEpochDeltaSeconds = 11644473600ll; | 
 |  | 
 | // static | 
 | const int64 Time::kWindowsEpochDeltaMicroseconds = | 
 |     kWindowsEpochDeltaSeconds * Time::kMicrosecondsPerSecond; | 
 |  | 
 | // Some functions in time.cc use time_t directly, so we provide an offset | 
 | // to convert from time_t (Unix epoch) and internal (Windows epoch). | 
 | // static | 
 | const int64 Time::kTimeTToMicrosecondsOffset = kWindowsEpochDeltaMicroseconds; | 
 |  | 
 | // static | 
 | Time Time::Now() { | 
 |   struct timeval tv; | 
 |   struct timezone tz = { 0, 0 };  // UTC | 
 |   if (gettimeofday(&tv, &tz) != 0) { | 
 |     DCHECK(0) << "Could not determine time of day"; | 
 |     LOG(ERROR) << "Call to gettimeofday failed."; | 
 |     // Return null instead of uninitialized |tv| value, which contains random | 
 |     // garbage data. This may result in the crash seen in crbug.com/147570. | 
 |     return Time(); | 
 |   } | 
 |   // Combine seconds and microseconds in a 64-bit field containing microseconds | 
 |   // since the epoch.  That's enough for nearly 600 centuries.  Adjust from | 
 |   // Unix (1970) to Windows (1601) epoch. | 
 |   return Time((tv.tv_sec * kMicrosecondsPerSecond + tv.tv_usec) + | 
 |       kWindowsEpochDeltaMicroseconds); | 
 | } | 
 |  | 
 | // static | 
 | Time Time::NowFromSystemTime() { | 
 |   // Just use Now() because Now() returns the system time. | 
 |   return Now(); | 
 | } | 
 |  | 
 | void Time::Explode(bool is_local, Exploded* exploded) const { | 
 |   // Time stores times with microsecond resolution, but Exploded only carries | 
 |   // millisecond resolution, so begin by being lossy.  Adjust from Windows | 
 |   // epoch (1601) to Unix epoch (1970); | 
 |   int64 microseconds = us_ - kWindowsEpochDeltaMicroseconds; | 
 |   // The following values are all rounded towards -infinity. | 
 |   int64 milliseconds;  // Milliseconds since epoch. | 
 |   SysTime seconds;  // Seconds since epoch. | 
 |   int millisecond;  // Exploded millisecond value (0-999). | 
 |   if (microseconds >= 0) { | 
 |     // Rounding towards -infinity <=> rounding towards 0, in this case. | 
 |     milliseconds = microseconds / kMicrosecondsPerMillisecond; | 
 |     seconds = milliseconds / kMillisecondsPerSecond; | 
 |     millisecond = milliseconds % kMillisecondsPerSecond; | 
 |   } else { | 
 |     // Round these *down* (towards -infinity). | 
 |     milliseconds = (microseconds - kMicrosecondsPerMillisecond + 1) / | 
 |                    kMicrosecondsPerMillisecond; | 
 |     seconds = (milliseconds - kMillisecondsPerSecond + 1) / | 
 |               kMillisecondsPerSecond; | 
 |     // Make this nonnegative (and between 0 and 999 inclusive). | 
 |     millisecond = milliseconds % kMillisecondsPerSecond; | 
 |     if (millisecond < 0) | 
 |       millisecond += kMillisecondsPerSecond; | 
 |   } | 
 |  | 
 |   struct tm timestruct; | 
 |   SysTimeToTimeStruct(seconds, ×truct, is_local); | 
 |  | 
 |   exploded->year         = timestruct.tm_year + 1900; | 
 |   exploded->month        = timestruct.tm_mon + 1; | 
 |   exploded->day_of_week  = timestruct.tm_wday; | 
 |   exploded->day_of_month = timestruct.tm_mday; | 
 |   exploded->hour         = timestruct.tm_hour; | 
 |   exploded->minute       = timestruct.tm_min; | 
 |   exploded->second       = timestruct.tm_sec; | 
 |   exploded->millisecond  = millisecond; | 
 | } | 
 |  | 
 | // static | 
 | Time Time::FromExploded(bool is_local, const Exploded& exploded) { | 
 |   struct tm timestruct; | 
 |   timestruct.tm_sec    = exploded.second; | 
 |   timestruct.tm_min    = exploded.minute; | 
 |   timestruct.tm_hour   = exploded.hour; | 
 |   timestruct.tm_mday   = exploded.day_of_month; | 
 |   timestruct.tm_mon    = exploded.month - 1; | 
 |   timestruct.tm_year   = exploded.year - 1900; | 
 |   timestruct.tm_wday   = exploded.day_of_week;  // mktime/timegm ignore this | 
 |   timestruct.tm_yday   = 0;     // mktime/timegm ignore this | 
 |   timestruct.tm_isdst  = -1;    // attempt to figure it out | 
 | #if !defined(OS_NACL) && !defined(OS_SOLARIS) | 
 |   timestruct.tm_gmtoff = 0;     // not a POSIX field, so mktime/timegm ignore | 
 |   timestruct.tm_zone   = NULL;  // not a POSIX field, so mktime/timegm ignore | 
 | #endif | 
 |  | 
 |  | 
 |   int64 milliseconds; | 
 |   SysTime seconds; | 
 |  | 
 |   // Certain exploded dates do not really exist due to daylight saving times, | 
 |   // and this causes mktime() to return implementation-defined values when | 
 |   // tm_isdst is set to -1. On Android, the function will return -1, while the | 
 |   // C libraries of other platforms typically return a liberally-chosen value. | 
 |   // Handling this requires the special code below. | 
 |  | 
 |   // SysTimeFromTimeStruct() modifies the input structure, save current value. | 
 |   struct tm timestruct0 = timestruct; | 
 |  | 
 |   seconds = SysTimeFromTimeStruct(×truct, is_local); | 
 |   if (seconds == -1) { | 
 |     // Get the time values with tm_isdst == 0 and 1, then select the closest one | 
 |     // to UTC 00:00:00 that isn't -1. | 
 |     timestruct = timestruct0; | 
 |     timestruct.tm_isdst = 0; | 
 |     int64 seconds_isdst0 = SysTimeFromTimeStruct(×truct, is_local); | 
 |  | 
 |     timestruct = timestruct0; | 
 |     timestruct.tm_isdst = 1; | 
 |     int64 seconds_isdst1 = SysTimeFromTimeStruct(×truct, is_local); | 
 |  | 
 |     // seconds_isdst0 or seconds_isdst1 can be -1 for some timezones. | 
 |     // E.g. "CLST" (Chile Summer Time) returns -1 for 'tm_isdt == 1'. | 
 |     if (seconds_isdst0 < 0) | 
 |       seconds = seconds_isdst1; | 
 |     else if (seconds_isdst1 < 0) | 
 |       seconds = seconds_isdst0; | 
 |     else | 
 |       seconds = std::min(seconds_isdst0, seconds_isdst1); | 
 |   } | 
 |  | 
 |   // Handle overflow.  Clamping the range to what mktime and timegm might | 
 |   // return is the best that can be done here.  It's not ideal, but it's better | 
 |   // than failing here or ignoring the overflow case and treating each time | 
 |   // overflow as one second prior to the epoch. | 
 |   if (seconds == -1 && | 
 |       (exploded.year < 1969 || exploded.year > 1970)) { | 
 |     // If exploded.year is 1969 or 1970, take -1 as correct, with the | 
 |     // time indicating 1 second prior to the epoch.  (1970 is allowed to handle | 
 |     // time zone and DST offsets.)  Otherwise, return the most future or past | 
 |     // time representable.  Assumes the time_t epoch is 1970-01-01 00:00:00 UTC. | 
 |     // | 
 |     // The minimum and maximum representible times that mktime and timegm could | 
 |     // return are used here instead of values outside that range to allow for | 
 |     // proper round-tripping between exploded and counter-type time | 
 |     // representations in the presence of possible truncation to time_t by | 
 |     // division and use with other functions that accept time_t. | 
 |     // | 
 |     // When representing the most distant time in the future, add in an extra | 
 |     // 999ms to avoid the time being less than any other possible value that | 
 |     // this function can return. | 
 |  | 
 |     // On Android, SysTime is int64, special care must be taken to avoid | 
 |     // overflows. | 
 |     const int64 min_seconds = (sizeof(SysTime) < sizeof(int64)) | 
 |                                   ? std::numeric_limits<SysTime>::min() | 
 |                                   : std::numeric_limits<int32_t>::min(); | 
 |     const int64 max_seconds = (sizeof(SysTime) < sizeof(int64)) | 
 |                                   ? std::numeric_limits<SysTime>::max() | 
 |                                   : std::numeric_limits<int32_t>::max(); | 
 |     if (exploded.year < 1969) { | 
 |       milliseconds = min_seconds * kMillisecondsPerSecond; | 
 |     } else { | 
 |       milliseconds = max_seconds * kMillisecondsPerSecond; | 
 |       milliseconds += (kMillisecondsPerSecond - 1); | 
 |     } | 
 |   } else { | 
 |     milliseconds = seconds * kMillisecondsPerSecond + exploded.millisecond; | 
 |   } | 
 |  | 
 |   // Adjust from Unix (1970) to Windows (1601) epoch. | 
 |   return Time((milliseconds * kMicrosecondsPerMillisecond) + | 
 |       kWindowsEpochDeltaMicroseconds); | 
 | } | 
 |  | 
 | // TimeTicks ------------------------------------------------------------------ | 
 | // static | 
 | TimeTicks TimeTicks::Now() { | 
 |   return TimeTicks(ClockNow(CLOCK_MONOTONIC)); | 
 | } | 
 |  | 
 | // static | 
 | bool TimeTicks::IsHighResolution() { | 
 |   return true; | 
 | } | 
 |  | 
 | // static | 
 | ThreadTicks ThreadTicks::Now() { | 
 | #if (defined(_POSIX_THREAD_CPUTIME) && (_POSIX_THREAD_CPUTIME >= 0)) || \ | 
 |     defined(OS_ANDROID) | 
 |   return ThreadTicks(ClockNow(CLOCK_THREAD_CPUTIME_ID)); | 
 | #else | 
 |   NOTREACHED(); | 
 |   return ThreadTicks(); | 
 | #endif | 
 | } | 
 |  | 
 | // Use the Chrome OS specific system-wide clock. | 
 | #if defined(OS_CHROMEOS) | 
 | // static | 
 | TraceTicks TraceTicks::Now() { | 
 |   struct timespec ts; | 
 |   if (clock_gettime(kClockSystemTrace, &ts) != 0) { | 
 |     // NB: fall-back for a chrome os build running on linux | 
 |     return TraceTicks(ClockNow(CLOCK_MONOTONIC)); | 
 |   } | 
 |   return TraceTicks(ConvertTimespecToMicros(ts)); | 
 | } | 
 |  | 
 | #else  // !defined(OS_CHROMEOS) | 
 |  | 
 | // static | 
 | TraceTicks TraceTicks::Now() { | 
 |   return TraceTicks(ClockNow(CLOCK_MONOTONIC)); | 
 | } | 
 |  | 
 | #endif  // defined(OS_CHROMEOS) | 
 |  | 
 | #endif  // !OS_MACOSX | 
 |  | 
 | // static | 
 | Time Time::FromTimeVal(struct timeval t) { | 
 |   DCHECK_LT(t.tv_usec, static_cast<int>(Time::kMicrosecondsPerSecond)); | 
 |   DCHECK_GE(t.tv_usec, 0); | 
 |   if (t.tv_usec == 0 && t.tv_sec == 0) | 
 |     return Time(); | 
 |   if (t.tv_usec == static_cast<suseconds_t>(Time::kMicrosecondsPerSecond) - 1 && | 
 |       t.tv_sec == std::numeric_limits<time_t>::max()) | 
 |     return Max(); | 
 |   return Time( | 
 |       (static_cast<int64>(t.tv_sec) * Time::kMicrosecondsPerSecond) + | 
 |       t.tv_usec + | 
 |       kTimeTToMicrosecondsOffset); | 
 | } | 
 |  | 
 | struct timeval Time::ToTimeVal() const { | 
 |   struct timeval result; | 
 |   if (is_null()) { | 
 |     result.tv_sec = 0; | 
 |     result.tv_usec = 0; | 
 |     return result; | 
 |   } | 
 |   if (is_max()) { | 
 |     result.tv_sec = std::numeric_limits<time_t>::max(); | 
 |     result.tv_usec = static_cast<suseconds_t>(Time::kMicrosecondsPerSecond) - 1; | 
 |     return result; | 
 |   } | 
 |   int64 us = us_ - kTimeTToMicrosecondsOffset; | 
 |   result.tv_sec = us / Time::kMicrosecondsPerSecond; | 
 |   result.tv_usec = us % Time::kMicrosecondsPerSecond; | 
 |   return result; | 
 | } | 
 |  | 
 | }  // namespace base |