| // Copyright 2012 The Chromium OS Authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style license that can be |
| // found in the LICENSE file. |
| |
| // This code implements SPAKE2, a variant of EKE: |
| // http://www.di.ens.fr/~pointche/pub.php?reference=AbPo04 |
| |
| #include "third_party/chromium/crypto/p224_spake.h" |
| |
| #include <algorithm> |
| |
| #include <base/logging.h> |
| #include <base/rand_util.h> |
| |
| #include "third_party/chromium/crypto/p224.h" |
| |
| namespace { |
| |
| // The following two points (M and N in the protocol) are verifiable random |
| // points on the curve and can be generated with the following code: |
| |
| // #include <stdint.h> |
| // #include <stdio.h> |
| // #include <string.h> |
| // |
| // #include <openssl/ec.h> |
| // #include <openssl/obj_mac.h> |
| // #include <openssl/sha.h> |
| // |
| // static const char kSeed1[] = "P224 point generation seed (M)"; |
| // static const char kSeed2[] = "P224 point generation seed (N)"; |
| // |
| // void find_seed(const char* seed) { |
| // SHA256_CTX sha256; |
| // uint8_t digest[SHA256_DIGEST_LENGTH]; |
| // |
| // SHA256_Init(&sha256); |
| // SHA256_Update(&sha256, seed, strlen(seed)); |
| // SHA256_Final(digest, &sha256); |
| // |
| // BIGNUM x, y; |
| // EC_GROUP* p224 = EC_GROUP_new_by_curve_name(NID_secp224r1); |
| // EC_POINT* p = EC_POINT_new(p224); |
| // |
| // for (unsigned i = 0;; i++) { |
| // BN_init(&x); |
| // BN_bin2bn(digest, 28, &x); |
| // |
| // if (EC_POINT_set_compressed_coordinates_GFp( |
| // p224, p, &x, digest[28] & 1, NULL)) { |
| // BN_init(&y); |
| // EC_POINT_get_affine_coordinates_GFp(p224, p, &x, &y, NULL); |
| // char* x_str = BN_bn2hex(&x); |
| // char* y_str = BN_bn2hex(&y); |
| // printf("Found after %u iterations:\n%s\n%s\n", i, x_str, y_str); |
| // OPENSSL_free(x_str); |
| // OPENSSL_free(y_str); |
| // BN_free(&x); |
| // BN_free(&y); |
| // break; |
| // } |
| // |
| // SHA256_Init(&sha256); |
| // SHA256_Update(&sha256, digest, sizeof(digest)); |
| // SHA256_Final(digest, &sha256); |
| // |
| // BN_free(&x); |
| // } |
| // |
| // EC_POINT_free(p); |
| // EC_GROUP_free(p224); |
| // } |
| // |
| // int main() { |
| // find_seed(kSeed1); |
| // find_seed(kSeed2); |
| // return 0; |
| // } |
| |
| const crypto::p224::Point kM = { |
| {174237515, 77186811, 235213682, 33849492, |
| 33188520, 48266885, 177021753, 81038478}, |
| {104523827, 245682244, 266509668, 236196369, |
| 28372046, 145351378, 198520366, 113345994}, |
| {1, 0, 0, 0, 0, 0, 0, 0}, |
| }; |
| |
| const crypto::p224::Point kN = { |
| {136176322, 263523628, 251628795, 229292285, |
| 5034302, 185981975, 171998428, 11653062}, |
| {197567436, 51226044, 60372156, 175772188, |
| 42075930, 8083165, 160827401, 65097570}, |
| {1, 0, 0, 0, 0, 0, 0, 0}, |
| }; |
| |
| // Performs a constant-time comparison of two strings, returning true if the |
| // strings are equal. |
| // |
| // For cryptographic operations, comparison functions such as memcmp() may |
| // expose side-channel information about input, allowing an attacker to |
| // perform timing analysis to determine what the expected bits should be. In |
| // order to avoid such attacks, the comparison must execute in constant time, |
| // so as to not to reveal to the attacker where the difference(s) are. |
| // For an example attack, see |
| // http://groups.google.com/group/keyczar-discuss/browse_thread/thread/5571eca0948b2a13 |
| bool SecureMemEqual(const uint8_t* s1_ptr, const uint8_t* s2_ptr, size_t n) { |
| uint8_t tmp = 0; |
| for (size_t i = 0; i < n; ++i, ++s1_ptr, ++s2_ptr) |
| tmp |= *s1_ptr ^ *s2_ptr; |
| return (tmp == 0); |
| } |
| |
| } // anonymous namespace |
| |
| namespace crypto { |
| |
| P224EncryptedKeyExchange::P224EncryptedKeyExchange( |
| PeerType peer_type, const base::StringPiece& password) |
| : state_(kStateInitial), |
| is_server_(peer_type == kPeerTypeServer) { |
| memset(&x_, 0, sizeof(x_)); |
| memset(&expected_authenticator_, 0, sizeof(expected_authenticator_)); |
| |
| // x_ is a random scalar. |
| base::RandBytes(x_, sizeof(x_)); |
| |
| // Calculate |password| hash to get SPAKE password value. |
| SHA256HashString(std::string(password.data(), password.length()), |
| pw_, sizeof(pw_)); |
| |
| Init(); |
| } |
| |
| void P224EncryptedKeyExchange::Init() { |
| // X = g**x_ |
| p224::Point X; |
| p224::ScalarBaseMult(x_, &X); |
| |
| // The client masks the Diffie-Hellman value, X, by adding M**pw and the |
| // server uses N**pw. |
| p224::Point MNpw; |
| p224::ScalarMult(is_server_ ? kN : kM, pw_, &MNpw); |
| |
| // X* = X + (N|M)**pw |
| p224::Point Xstar; |
| p224::Add(X, MNpw, &Xstar); |
| |
| next_message_ = Xstar.ToString(); |
| } |
| |
| const std::string& P224EncryptedKeyExchange::GetNextMessage() { |
| if (state_ == kStateInitial) { |
| state_ = kStateRecvDH; |
| return next_message_; |
| } else if (state_ == kStateSendHash) { |
| state_ = kStateRecvHash; |
| return next_message_; |
| } |
| |
| LOG(FATAL) << "P224EncryptedKeyExchange::GetNextMessage called in" |
| " bad state " << state_; |
| next_message_ = ""; |
| return next_message_; |
| } |
| |
| P224EncryptedKeyExchange::Result P224EncryptedKeyExchange::ProcessMessage( |
| const base::StringPiece& message) { |
| if (state_ == kStateRecvHash) { |
| // This is the final state of the protocol: we are reading the peer's |
| // authentication hash and checking that it matches the one that we expect. |
| if (message.size() != sizeof(expected_authenticator_)) { |
| error_ = "peer's hash had an incorrect size"; |
| return kResultFailed; |
| } |
| if (!SecureMemEqual(reinterpret_cast<const uint8_t*>(message.data()), |
| expected_authenticator_, message.size())) { |
| error_ = "peer's hash had incorrect value"; |
| return kResultFailed; |
| } |
| state_ = kStateDone; |
| return kResultSuccess; |
| } |
| |
| if (state_ != kStateRecvDH) { |
| LOG(FATAL) << "P224EncryptedKeyExchange::ProcessMessage called in" |
| " bad state " << state_; |
| error_ = "internal error"; |
| return kResultFailed; |
| } |
| |
| // Y* is the other party's masked, Diffie-Hellman value. |
| p224::Point Ystar; |
| if (!Ystar.SetFromString(message)) { |
| error_ = "failed to parse peer's masked Diffie-Hellman value"; |
| return kResultFailed; |
| } |
| |
| // We calculate the mask value: (N|M)**pw |
| p224::Point MNpw, minus_MNpw, Y, k; |
| p224::ScalarMult(is_server_ ? kM : kN, pw_, &MNpw); |
| p224::Negate(MNpw, &minus_MNpw); |
| |
| // Y = Y* - (N|M)**pw |
| p224::Add(Ystar, minus_MNpw, &Y); |
| |
| // K = Y**x_ |
| p224::ScalarMult(Y, x_, &k); |
| |
| // If everything worked out, then K is the same for both parties. |
| key_ = k.ToString(); |
| |
| std::string client_masked_dh, server_masked_dh; |
| if (is_server_) { |
| client_masked_dh = message.as_string(); |
| server_masked_dh = next_message_; |
| } else { |
| client_masked_dh = next_message_; |
| server_masked_dh = message.as_string(); |
| } |
| |
| // Now we calculate the hashes that each side will use to prove to the other |
| // that they derived the correct value for K. |
| uint8_t client_hash[kSHA256Length], server_hash[kSHA256Length]; |
| CalculateHash(kPeerTypeClient, client_masked_dh, server_masked_dh, key_, |
| client_hash); |
| CalculateHash(kPeerTypeServer, client_masked_dh, server_masked_dh, key_, |
| server_hash); |
| |
| const uint8_t* my_hash = is_server_ ? server_hash : client_hash; |
| const uint8_t* their_hash = is_server_ ? client_hash : server_hash; |
| |
| next_message_ = |
| std::string(reinterpret_cast<const char*>(my_hash), kSHA256Length); |
| memcpy(expected_authenticator_, their_hash, kSHA256Length); |
| state_ = kStateSendHash; |
| return kResultPending; |
| } |
| |
| void P224EncryptedKeyExchange::CalculateHash( |
| PeerType peer_type, |
| const std::string& client_masked_dh, |
| const std::string& server_masked_dh, |
| const std::string& k, |
| uint8_t* out_digest) { |
| std::string hash_contents; |
| |
| if (peer_type == kPeerTypeServer) { |
| hash_contents = "server"; |
| } else { |
| hash_contents = "client"; |
| } |
| |
| hash_contents += client_masked_dh; |
| hash_contents += server_masked_dh; |
| hash_contents += |
| std::string(reinterpret_cast<const char *>(pw_), sizeof(pw_)); |
| hash_contents += k; |
| |
| SHA256HashString(hash_contents, out_digest, kSHA256Length); |
| } |
| |
| const std::string& P224EncryptedKeyExchange::error() const { |
| return error_; |
| } |
| |
| const std::string& P224EncryptedKeyExchange::GetKey() const { |
| DCHECK_EQ(state_, kStateDone); |
| return GetUnverifiedKey(); |
| } |
| |
| const std::string& P224EncryptedKeyExchange::GetUnverifiedKey() const { |
| // Key is already final when state is kStateSendHash. Subsequent states are |
| // used only for verification of the key. Some users may combine verification |
| // with sending verifiable data instead of |expected_authenticator_|. |
| DCHECK_GE(state_, kStateSendHash); |
| return key_; |
| } |
| |
| void P224EncryptedKeyExchange::SetXForTesting(const std::string& x) { |
| memset(&x_, 0, sizeof(x_)); |
| memcpy(&x_, x.data(), std::min(x.size(), sizeof(x_))); |
| Init(); |
| } |
| |
| } // namespace crypto |