blob: c8238045369dac8935210fdd088e8ce5795456c2 [file] [log] [blame]
// Copyright 2015 The Weave Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "src/macaroon.h"
#include <string.h>
#include "src/crypto_utils.h"
#include "src/macaroon_caveat.h"
#include "src/macaroon_caveat_internal.h"
#include "src/macaroon_encoding.h"
static bool create_mac_tag_(const uint8_t* key,
size_t key_len,
const UwMacaroonContext* context,
const UwMacaroonCaveat* const caveats[],
size_t num_caveats,
uint8_t mac_tag[UW_MACAROON_MAC_LEN]) {
if (key == NULL || key_len == 0 || context == NULL || caveats == NULL ||
num_caveats == 0 || mac_tag == NULL) {
return false;
}
// Store the intermediate MAC tags in an internal buffer before we finish the
// whole computation.
// If we use the output buffer mac_tag directly and certain errors happen in
// the middle of this computation, mac_tag will probably contain a valid
// macaroon tag with large scope than expected.
uint8_t mac_tag_buff[UW_MACAROON_MAC_LEN];
// Compute the first tag by using the key
if (!uw_macaroon_caveat_sign_(key, key_len, context, caveats[0], mac_tag_buff,
UW_MACAROON_MAC_LEN)) {
return false;
}
// Compute the rest of the tags by using the tag as the key
for (size_t i = 1; i < num_caveats; i++) {
if (!uw_macaroon_caveat_sign_(mac_tag_buff, UW_MACAROON_MAC_LEN, context,
caveats[i], mac_tag_buff,
UW_MACAROON_MAC_LEN)) {
return false;
}
}
memcpy(mac_tag, mac_tag_buff, UW_MACAROON_MAC_LEN);
return true;
}
static bool verify_mac_tag_(const uint8_t* root_key,
size_t root_key_len,
const UwMacaroonContext* context,
const UwMacaroonCaveat* const caveats[],
size_t num_caveats,
const uint8_t mac_tag[UW_MACAROON_MAC_LEN]) {
if (root_key == NULL || root_key_len == 0 || context == NULL ||
caveats == NULL || num_caveats == 0 || mac_tag == 0) {
return false;
}
uint8_t computed_mac_tag[UW_MACAROON_MAC_LEN] = {0};
if (!create_mac_tag_(root_key, root_key_len, context, caveats, num_caveats,
computed_mac_tag)) {
return false;
}
return uw_crypto_utils_equal_(mac_tag, computed_mac_tag, UW_MACAROON_MAC_LEN);
}
bool uw_macaroon_create_from_root_key_(UwMacaroon* new_macaroon,
const uint8_t* root_key,
size_t root_key_len,
const UwMacaroonContext* context,
const UwMacaroonCaveat* const caveats[],
size_t num_caveats) {
if (new_macaroon == NULL || root_key == NULL || context == NULL ||
root_key_len == 0 || caveats == NULL || num_caveats == 0) {
return false;
}
if (!create_mac_tag_(root_key, root_key_len, context, caveats, num_caveats,
new_macaroon->mac_tag)) {
return false;
}
new_macaroon->num_caveats = num_caveats;
new_macaroon->caveats = caveats;
return true;
}
bool uw_macaroon_extend_(const UwMacaroon* old_macaroon,
UwMacaroon* new_macaroon,
const UwMacaroonContext* context,
const UwMacaroonCaveat* additional_caveat,
uint8_t* buffer,
size_t buffer_size) {
if (old_macaroon == NULL || new_macaroon == NULL || context == NULL ||
additional_caveat == NULL || buffer == NULL || buffer_size == 0) {
return false;
}
new_macaroon->num_caveats = old_macaroon->num_caveats + 1;
// Extend the caveat pointer list
if ((new_macaroon->num_caveats) * sizeof(UwMacaroonCaveat*) > buffer_size) {
// Not enough memory to store the extended caveat pointer list
return false;
}
const UwMacaroonCaveat** extended_list = (const UwMacaroonCaveat**)buffer;
if (new_macaroon->caveats != old_macaroon->caveats) {
memcpy(extended_list, old_macaroon->caveats,
old_macaroon->num_caveats * sizeof(old_macaroon->caveats[0]));
}
extended_list[old_macaroon->num_caveats] = additional_caveat;
new_macaroon->caveats = (const UwMacaroonCaveat* const*)extended_list;
// Compute the new MAC tag
return create_mac_tag_(old_macaroon->mac_tag, UW_MACAROON_MAC_LEN, context,
new_macaroon->caveats + old_macaroon->num_caveats, 1,
new_macaroon->mac_tag);
}
static void init_validation_result(UwMacaroonValidationResult* result) {
// Start from the largest scope
*result = (UwMacaroonValidationResult){
.granted_scope = kUwMacaroonCaveatScopeTypeOwner,
.expiration_time = UINT32_MAX,
};
}
/** Reset the result object to the lowest scope when encountering errors */
static void reset_validation_result(UwMacaroonValidationResult* result) {
*result = (UwMacaroonValidationResult){
.weave_app_restricted = true,
.granted_scope = UW_MACAROON_CAVEAT_SCOPE_LOWEST_POSSIBLE};
}
/** Get the next closest scope (to the narrower side). */
static UwMacaroonCaveatScopeType get_closest_scope(
UwMacaroonCaveatScopeType scope) {
if (scope <= kUwMacaroonCaveatScopeTypeOwner) {
return kUwMacaroonCaveatScopeTypeOwner;
} else if (scope <= kUwMacaroonCaveatScopeTypeManager) {
return kUwMacaroonCaveatScopeTypeManager;
} else if (scope <= kUwMacaroonCaveatScopeTypeUser) {
return kUwMacaroonCaveatScopeTypeUser;
} else if (scope <= kUwMacaroonCaveatScopeTypeViewer) {
return kUwMacaroonCaveatScopeTypeViewer;
}
return scope;
}
bool uw_macaroon_validate_(const UwMacaroon* macaroon,
const uint8_t* root_key,
size_t root_key_len,
const UwMacaroonContext* context,
UwMacaroonValidationResult* result) {
if (result == NULL) {
return false;
}
init_validation_result(result);
if (root_key == NULL || root_key_len == 0 || macaroon == NULL ||
context == NULL || result == NULL ||
!verify_mac_tag_(root_key, root_key_len, context, macaroon->caveats,
macaroon->num_caveats, macaroon->mac_tag)) {
return false;
}
UwMacaroonValidationState state;
if (!uw_macaroon_caveat_init_validation_state_(&state)) {
return false;
}
for (size_t i = 0; i < macaroon->num_caveats; i++) {
if (!uw_macaroon_caveat_validate_(macaroon->caveats[i], context, &state,
result)) {
reset_validation_result(result); // Reset the result object
return false;
}
}
result->granted_scope = get_closest_scope(result->granted_scope);
return true;
}
// Encode a Macaroon to a byte string
bool uw_macaroon_serialize_(const UwMacaroon* macaroon,
uint8_t* out,
size_t out_len,
size_t* resulting_str_len) {
if (macaroon == NULL || out == NULL ||
out_len < UW_MACAROON_ENCODING_MAX_UINT_CBOR_LEN ||
resulting_str_len == NULL) {
return false;
}
// Need to encode the whole Macaroon again into a byte string.
// First encode the part without the overall byte string header to the buffer
// to get the total length.
size_t item_len = 0;
// Start with an offset
size_t offset = UW_MACAROON_ENCODING_MAX_UINT_CBOR_LEN;
if (!uw_macaroon_encoding_encode_array_len_((uint32_t)(macaroon->num_caveats),
out + offset, out_len - offset,
&item_len)) {
return false;
}
offset += item_len;
for (size_t i = 0; i < macaroon->num_caveats; i++) {
if (!uw_macaroon_encoding_encode_byte_str_(
macaroon->caveats[i]->bytes, macaroon->caveats[i]->num_bytes,
out + offset, out_len - offset, &item_len)) {
return false;
}
offset += item_len;
}
if (!uw_macaroon_encoding_encode_byte_str_(macaroon->mac_tag,
UW_MACAROON_MAC_LEN, out + offset,
out_len - offset, &item_len)) {
return false;
}
offset += item_len;
// Encode the length of the body at the beginning of the buffer
size_t bstr_len = offset - UW_MACAROON_ENCODING_MAX_UINT_CBOR_LEN;
if (!uw_macaroon_encoding_encode_byte_str_len_(
bstr_len, out, UW_MACAROON_ENCODING_MAX_UINT_CBOR_LEN, &item_len)) {
return false;
}
// Move the body part to be adjacent to the byte string header part
memmove(out + item_len, out + UW_MACAROON_ENCODING_MAX_UINT_CBOR_LEN,
bstr_len);
*resulting_str_len = item_len + bstr_len;
return true;
}
// Decode a byte string to a Macaroon
bool uw_macaroon_deserialize_(const uint8_t* in,
size_t in_len,
uint8_t* buffer,
size_t buffer_size,
UwMacaroon* macaroon) {
if (in == NULL || in_len == 0 || buffer == NULL || buffer_size == 0 ||
macaroon == NULL) {
return false;
}
size_t offset = 0;
size_t item_len = 0;
const uint8_t* bstr = NULL;
size_t bstr_len = 0;
if (!uw_macaroon_encoding_decode_byte_str_(in + offset, in_len - offset,
&bstr, &bstr_len)) {
return false;
}
item_len = bstr - in; // The length of the first byte string header
offset += item_len;
if (item_len + bstr_len != in_len) {
// The string length doesn't match
return false;
}
uint32_t array_len = 0;
if (!uw_macaroon_encoding_decode_array_len_(in + offset, in_len - offset,
&array_len)) {
return false;
}
macaroon->num_caveats = (size_t)array_len;
if (buffer_size <
(array_len * (sizeof(UwMacaroonCaveat) + sizeof(UwMacaroonCaveat*)))) {
// Need two levels of abstraction, one for structs and one for pointers
return false;
}
if (!uw_macaroon_encoding_get_item_len_(in + offset, in_len - offset,
&item_len)) {
return false;
}
offset += item_len;
const UwMacaroonCaveat** caveat_pointers = (const UwMacaroonCaveat**)buffer;
buffer += array_len * sizeof(UwMacaroonCaveat*);
UwMacaroonCaveat* caveat_structs = (UwMacaroonCaveat*)buffer;
for (size_t i = 0; i < array_len; i++) {
caveat_pointers[i] = &(caveat_structs[i]);
if (!uw_macaroon_encoding_decode_byte_str_(
in + offset, in_len - offset, &(caveat_structs[i].bytes),
&(caveat_structs[i].num_bytes))) {
return false;
}
if (!uw_macaroon_encoding_get_item_len_(in + offset, in_len - offset,
&item_len)) {
return false;
}
offset += item_len;
}
macaroon->caveats = caveat_pointers;
const uint8_t* tag;
size_t tag_len;
if (!uw_macaroon_encoding_decode_byte_str_(in + offset, in_len - offset, &tag,
&tag_len) ||
tag_len != UW_MACAROON_MAC_LEN) {
return false;
}
memcpy(macaroon->mac_tag, tag, UW_MACAROON_MAC_LEN);
return true;
}