blob: 6d82322c08ed582393b76fa4033c505112a34209 [file] [log] [blame]
Vitaly Buka9ba72a82015-08-06 17:36:17 -07001// Copyright 2012 The Chromium OS Authors. All rights reserved.
Vitaly Buka6ca6a232015-08-06 17:32:43 -07002// Use of this source code is governed by a BSD-style license that can be
3// found in the LICENSE file.
4
5// This code implements SPAKE2, a variant of EKE:
6// http://www.di.ens.fr/~pointche/pub.php?reference=AbPo04
7
Vitaly Buka9e5b6832015-10-14 15:57:14 -07008#include "third_party/chromium/crypto/p224_spake.h"
Vitaly Buka6ca6a232015-08-06 17:32:43 -07009
10#include <algorithm>
11
12#include <base/logging.h>
Vitaly Buka9ba72a82015-08-06 17:36:17 -070013#include <base/rand_util.h>
14
Vitaly Buka9e5b6832015-10-14 15:57:14 -070015#include "third_party/chromium/crypto/p224.h"
Vitaly Buka9ba72a82015-08-06 17:36:17 -070016
Vitaly Buka9ba72a82015-08-06 17:36:17 -070017namespace crypto {
Vitaly Buka6ca6a232015-08-06 17:32:43 -070018
19namespace {
20
21// The following two points (M and N in the protocol) are verifiable random
22// points on the curve and can be generated with the following code:
23
24// #include <stdint.h>
25// #include <stdio.h>
26// #include <string.h>
27//
28// #include <openssl/ec.h>
29// #include <openssl/obj_mac.h>
30// #include <openssl/sha.h>
31//
32// static const char kSeed1[] = "P224 point generation seed (M)";
33// static const char kSeed2[] = "P224 point generation seed (N)";
34//
35// void find_seed(const char* seed) {
36// SHA256_CTX sha256;
37// uint8_t digest[SHA256_DIGEST_LENGTH];
38//
39// SHA256_Init(&sha256);
40// SHA256_Update(&sha256, seed, strlen(seed));
41// SHA256_Final(digest, &sha256);
42//
43// BIGNUM x, y;
44// EC_GROUP* p224 = EC_GROUP_new_by_curve_name(NID_secp224r1);
45// EC_POINT* p = EC_POINT_new(p224);
46//
47// for (unsigned i = 0;; i++) {
48// BN_init(&x);
49// BN_bin2bn(digest, 28, &x);
50//
51// if (EC_POINT_set_compressed_coordinates_GFp(
52// p224, p, &x, digest[28] & 1, NULL)) {
53// BN_init(&y);
54// EC_POINT_get_affine_coordinates_GFp(p224, p, &x, &y, NULL);
55// char* x_str = BN_bn2hex(&x);
56// char* y_str = BN_bn2hex(&y);
57// printf("Found after %u iterations:\n%s\n%s\n", i, x_str, y_str);
58// OPENSSL_free(x_str);
59// OPENSSL_free(y_str);
60// BN_free(&x);
61// BN_free(&y);
62// break;
63// }
64//
65// SHA256_Init(&sha256);
66// SHA256_Update(&sha256, digest, sizeof(digest));
67// SHA256_Final(digest, &sha256);
68//
69// BN_free(&x);
70// }
71//
72// EC_POINT_free(p);
73// EC_GROUP_free(p224);
74// }
75//
76// int main() {
77// find_seed(kSeed1);
78// find_seed(kSeed2);
79// return 0;
80// }
81
Vitaly Buka9ba72a82015-08-06 17:36:17 -070082const p224::Point kM = {
Vitaly Buka6ca6a232015-08-06 17:32:43 -070083 {174237515, 77186811, 235213682, 33849492,
Vitaly Buka9ba72a82015-08-06 17:36:17 -070084 33188520, 48266885, 177021753, 81038478},
Vitaly Buka6ca6a232015-08-06 17:32:43 -070085 {104523827, 245682244, 266509668, 236196369,
Vitaly Buka9ba72a82015-08-06 17:36:17 -070086 28372046, 145351378, 198520366, 113345994},
Vitaly Buka6ca6a232015-08-06 17:32:43 -070087 {1, 0, 0, 0, 0, 0, 0, 0},
88};
89
Vitaly Buka9ba72a82015-08-06 17:36:17 -070090const p224::Point kN = {
Vitaly Buka6ca6a232015-08-06 17:32:43 -070091 {136176322, 263523628, 251628795, 229292285,
Vitaly Buka9ba72a82015-08-06 17:36:17 -070092 5034302, 185981975, 171998428, 11653062},
Vitaly Buka6ca6a232015-08-06 17:32:43 -070093 {197567436, 51226044, 60372156, 175772188,
Vitaly Buka9ba72a82015-08-06 17:36:17 -070094 42075930, 8083165, 160827401, 65097570},
Vitaly Buka6ca6a232015-08-06 17:32:43 -070095 {1, 0, 0, 0, 0, 0, 0, 0},
96};
97
Vitaly Buka9ba72a82015-08-06 17:36:17 -070098// Performs a constant-time comparison of two strings, returning true if the
99// strings are equal.
100//
101// For cryptographic operations, comparison functions such as memcmp() may
102// expose side-channel information about input, allowing an attacker to
103// perform timing analysis to determine what the expected bits should be. In
104// order to avoid such attacks, the comparison must execute in constant time,
105// so as to not to reveal to the attacker where the difference(s) are.
106// For an example attack, see
107// http://groups.google.com/group/keyczar-discuss/browse_thread/thread/5571eca0948b2a13
108bool SecureMemEqual(const uint8_t* s1_ptr, const uint8_t* s2_ptr, size_t n) {
109 uint8_t tmp = 0;
110 for (size_t i = 0; i < n; ++i, ++s1_ptr, ++s2_ptr)
111 tmp |= *s1_ptr ^ *s2_ptr;
112 return (tmp == 0);
113}
114
Vitaly Buka6ca6a232015-08-06 17:32:43 -0700115} // anonymous namespace
116
Vitaly Buka0d501072015-08-18 18:09:46 -0700117P224EncryptedKeyExchange::P224EncryptedKeyExchange(PeerType peer_type,
118 const std::string& password)
119 : state_(kStateInitial), is_server_(peer_type == kPeerTypeServer) {
Vitaly Buka6ca6a232015-08-06 17:32:43 -0700120 memset(&x_, 0, sizeof(x_));
121 memset(&expected_authenticator_, 0, sizeof(expected_authenticator_));
122
123 // x_ is a random scalar.
Vitaly Buka9ba72a82015-08-06 17:36:17 -0700124 base::RandBytes(x_, sizeof(x_));
Vitaly Buka6ca6a232015-08-06 17:32:43 -0700125
126 // Calculate |password| hash to get SPAKE password value.
127 SHA256HashString(std::string(password.data(), password.length()),
128 pw_, sizeof(pw_));
129
130 Init();
131}
132
133void P224EncryptedKeyExchange::Init() {
134 // X = g**x_
135 p224::Point X;
136 p224::ScalarBaseMult(x_, &X);
137
138 // The client masks the Diffie-Hellman value, X, by adding M**pw and the
139 // server uses N**pw.
140 p224::Point MNpw;
141 p224::ScalarMult(is_server_ ? kN : kM, pw_, &MNpw);
142
143 // X* = X + (N|M)**pw
144 p224::Point Xstar;
145 p224::Add(X, MNpw, &Xstar);
146
147 next_message_ = Xstar.ToString();
148}
149
150const std::string& P224EncryptedKeyExchange::GetNextMessage() {
151 if (state_ == kStateInitial) {
152 state_ = kStateRecvDH;
153 return next_message_;
154 } else if (state_ == kStateSendHash) {
155 state_ = kStateRecvHash;
156 return next_message_;
157 }
158
159 LOG(FATAL) << "P224EncryptedKeyExchange::GetNextMessage called in"
160 " bad state " << state_;
161 next_message_ = "";
162 return next_message_;
163}
164
165P224EncryptedKeyExchange::Result P224EncryptedKeyExchange::ProcessMessage(
Vitaly Buka0d501072015-08-18 18:09:46 -0700166 const std::string& message) {
Vitaly Buka6ca6a232015-08-06 17:32:43 -0700167 if (state_ == kStateRecvHash) {
168 // This is the final state of the protocol: we are reading the peer's
169 // authentication hash and checking that it matches the one that we expect.
170 if (message.size() != sizeof(expected_authenticator_)) {
171 error_ = "peer's hash had an incorrect size";
172 return kResultFailed;
173 }
Vitaly Buka9ba72a82015-08-06 17:36:17 -0700174 if (!SecureMemEqual(reinterpret_cast<const uint8_t*>(message.data()),
175 expected_authenticator_, message.size())) {
Vitaly Buka6ca6a232015-08-06 17:32:43 -0700176 error_ = "peer's hash had incorrect value";
177 return kResultFailed;
178 }
179 state_ = kStateDone;
180 return kResultSuccess;
181 }
182
183 if (state_ != kStateRecvDH) {
184 LOG(FATAL) << "P224EncryptedKeyExchange::ProcessMessage called in"
185 " bad state " << state_;
186 error_ = "internal error";
187 return kResultFailed;
188 }
189
190 // Y* is the other party's masked, Diffie-Hellman value.
191 p224::Point Ystar;
192 if (!Ystar.SetFromString(message)) {
193 error_ = "failed to parse peer's masked Diffie-Hellman value";
194 return kResultFailed;
195 }
196
197 // We calculate the mask value: (N|M)**pw
198 p224::Point MNpw, minus_MNpw, Y, k;
199 p224::ScalarMult(is_server_ ? kM : kN, pw_, &MNpw);
200 p224::Negate(MNpw, &minus_MNpw);
201
202 // Y = Y* - (N|M)**pw
203 p224::Add(Ystar, minus_MNpw, &Y);
204
205 // K = Y**x_
206 p224::ScalarMult(Y, x_, &k);
207
208 // If everything worked out, then K is the same for both parties.
209 key_ = k.ToString();
210
211 std::string client_masked_dh, server_masked_dh;
212 if (is_server_) {
Vitaly Buka0d501072015-08-18 18:09:46 -0700213 client_masked_dh = message;
Vitaly Buka6ca6a232015-08-06 17:32:43 -0700214 server_masked_dh = next_message_;
215 } else {
216 client_masked_dh = next_message_;
Vitaly Buka0d501072015-08-18 18:09:46 -0700217 server_masked_dh = message;
Vitaly Buka6ca6a232015-08-06 17:32:43 -0700218 }
219
220 // Now we calculate the hashes that each side will use to prove to the other
221 // that they derived the correct value for K.
222 uint8 client_hash[kSHA256Length], server_hash[kSHA256Length];
223 CalculateHash(kPeerTypeClient, client_masked_dh, server_masked_dh, key_,
224 client_hash);
225 CalculateHash(kPeerTypeServer, client_masked_dh, server_masked_dh, key_,
226 server_hash);
227
228 const uint8* my_hash = is_server_ ? server_hash : client_hash;
229 const uint8* their_hash = is_server_ ? client_hash : server_hash;
230
231 next_message_ =
232 std::string(reinterpret_cast<const char*>(my_hash), kSHA256Length);
233 memcpy(expected_authenticator_, their_hash, kSHA256Length);
234 state_ = kStateSendHash;
235 return kResultPending;
236}
237
238void P224EncryptedKeyExchange::CalculateHash(
239 PeerType peer_type,
240 const std::string& client_masked_dh,
241 const std::string& server_masked_dh,
242 const std::string& k,
243 uint8* out_digest) {
244 std::string hash_contents;
245
246 if (peer_type == kPeerTypeServer) {
247 hash_contents = "server";
248 } else {
249 hash_contents = "client";
250 }
251
252 hash_contents += client_masked_dh;
253 hash_contents += server_masked_dh;
254 hash_contents +=
255 std::string(reinterpret_cast<const char *>(pw_), sizeof(pw_));
256 hash_contents += k;
257
258 SHA256HashString(hash_contents, out_digest, kSHA256Length);
259}
260
261const std::string& P224EncryptedKeyExchange::error() const {
262 return error_;
263}
264
265const std::string& P224EncryptedKeyExchange::GetKey() const {
266 DCHECK_EQ(state_, kStateDone);
267 return GetUnverifiedKey();
268}
269
270const std::string& P224EncryptedKeyExchange::GetUnverifiedKey() const {
271 // Key is already final when state is kStateSendHash. Subsequent states are
272 // used only for verification of the key. Some users may combine verification
273 // with sending verifiable data instead of |expected_authenticator_|.
274 DCHECK_GE(state_, kStateSendHash);
275 return key_;
276}
277
278void P224EncryptedKeyExchange::SetXForTesting(const std::string& x) {
279 memset(&x_, 0, sizeof(x_));
280 memcpy(&x_, x.data(), std::min(x.size(), sizeof(x_)));
281 Init();
282}
283
284} // namespace crypto